Calcineurin, the conserved Ca(2+)/calmodulin-regulated protein phosphatase, mediates diverse aspects of Ca(2+)-dependent signaling. We show that substrates bind calcineurin with varying strengths and examine the impact of this affinity on signaling. We altered the calcineurin-docking site, or PxIxIT motif, in Crz1, the calcineurin-regulated transcription factor in S. cerevisiae, to decrease (Crz1(PVIAVN)) or increase (Crz1(PVIVIT)) its affinity for calcineurin. As a result, the Ca(2+)-dependent dephosphorylation and activation of Crz1(PVIAVN) are decreased, whereas Crz1(PVIVIT) is constitutively dephosphorylated and hyperactive. Surprisingly, the physiological consequences of altering calcineurin-Crz1 affinity depend on the growth conditions. Crz1(PVIVIT) improves yeast growth under several environmental stress conditions but causes a growth defect during alkaline stress, most likely by titrating calcineurin away from other substrates or regulators. Thus, calcineurin-substrate affinity determines the Ca(2+) concentration dependence and output of signaling in vivo as well as the balance between different branches of calcineurin signaling in an overall biological response.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2913616 | PMC |
http://dx.doi.org/10.1016/j.molcel.2007.02.014 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!