In this work, a concept is described for how the kinetics of photoinduced, transient, long-lived, nonfluorescent or weakly fluorescent states of fluorophore marker molecules can be extracted from the time-averaged fluorescence by using time-modulated excitation. The concept exploits the characteristic variation of the population of these states with the modulation parameters of the excitation and thereby circumvents the need for time resolution in the fluorescence detection. It combines the single-molecule sensitivity of fluorescence detection with the remarkable environmental responsiveness obtainable from long-lived transient states, yet does not in itself impose any constraints on the concentration or the fluorescence brightness of the sample molecules that can be measured. Modulation of the excitation can be performed by variation of the intensity of a stationary excitation beam in time or by repeated translations of a CW excitation beam with respect to the sample. As a first experimental verification of the approach, we have shown how the triplet-state parameters of the fluorophore rhodamine 6G in different aqueous environments can be extracted. We demonstrate that the concept is fully compatible with low time-resolution detection by a CCD camera. The concept opens for automated transient-state monitoring or imaging on a massively parallel scale and for high-throughput biomolecular screening as well as for more fundamental biomolecular studies. The concept should also be applicable to the monitoring of a range of other photoinduced nonfluorescent or weakly fluorescent transient states, from which subtle changes in the immediate microenvironment of the fluorophore marker molecules can be detected.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ac0622680DOI Listing

Publication Analysis

Top Keywords

time-averaged fluorescence
8
nonfluorescent weakly
8
weakly fluorescent
8
fluorophore marker
8
marker molecules
8
fluorescence detection
8
transient states
8
excitation beam
8
excitation
6
states
5

Similar Publications

Background:  The deep inferior epigastric artery perforator (DIEP) flap is the gold standard for autologous breast reconstruction. However, the conventional procedure's anterior sheath division, from perforating vessels to the pedicle origin, risks weakening the abdominal wall's primary strength layer. Employing the da Vinci Xi Surgical System with indocyanine green dye and near-infrared fluorescence imaging, we refined a robotic technique for bilateral DIEP flap harvest.

View Article and Find Full Text PDF

Nanoparticles used for drug delivery often require intravenous administration exposing them to fluid forces within the vasculature, yet the impact of blood flow on nanoparticle delivery remains incompletely understood. Here, we utilized transgenic zebrafish embryos to investigate the relationship between the accumulation of fluorescently labeled PEGylated liposomes and various hemodynamic factors (such as flow velocity, wall shear stress (WSS), and flow pattern) across a wide range of angiogenic blood vessels. We reconstructed 3D models of vascular structures from confocal images and used computational fluid dynamics to calculate local WSS, velocities, and define flow patterns.

View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to evaluate the use of indocyanine green (ICG) for detecting and reducing urinary tract injuries during robotic transvaginal surgery for endometriosis.
  • A retrospective analysis was conducted on 53 patients who underwent RvNOTES hysterectomy with ICG, noting an average age of 37.98 years, an operative time of around 181 minutes, and minimal blood loss.
  • Results showed no complications related to ICG, suggesting it's a safe method for ureter visibility during surgery, though further research is necessary for comprehensive benefits confirmation.
View Article and Find Full Text PDF

The anomalous diffusion of particles and energy in magnetized plasma systems is a widespread phenomenon that can adversely impact their operation and preclude predictive models. In this Letter, this diffusion is characterized noninvasively in a low-temperature, Hall-type plasma. Laser-induced fluorescence and incoherent Thomson scattering measurements are combined with a 1D generalized Ohm's law to infer the time-averaged inverse Hall parameter, a transport coefficient that governs cross-field diffusion.

View Article and Find Full Text PDF

Fluorescence Bar-Coding and Flowmetry Based on Dark State Transitions in Fluorescence Emitters.

J Phys Chem B

January 2024

Royal Institute of Technology (KTH), Experimental Biomolecular Physics, Dept. Applied Physics, Albanova University Center, 106 91 Stockholm, Sweden.

Reversible dark state transitions in fluorophores represent a limiting factor in fluorescence-based ultrasensitive spectroscopy, are a necessary basis for fluorescence-based super-resolution imaging, but may also offer additional, largely orthogonal fluorescence-based readout parameters. In this work, we analyzed the blinking kinetics of Cyanine5 (Cy5) as a bar-coding feature distinguishing Cy5 from rhodamine fluorophores having largely overlapping emission spectra. First, fluorescence correlation spectroscopy (FCS) solution measurements on mixtures of free fluorophores and fluorophore-labeled small unilamellar vesicles (SUVs) showed that Cy5 could be readily distinguished from the rhodamines by its reversible, largely excitation-driven isomerization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!