Fluorescent epibatidine agonists for neuronal and muscle-type nicotinic acetylcholine receptors.

Angew Chem Int Ed Engl

Laboratoire de Chimie Physique des Polymères et Membranes, Ecole Polytechniques Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.

Published: July 2007

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.200604807DOI Listing

Publication Analysis

Top Keywords

fluorescent epibatidine
4
epibatidine agonists
4
agonists neuronal
4
neuronal muscle-type
4
muscle-type nicotinic
4
nicotinic acetylcholine
4
acetylcholine receptors
4
fluorescent
1
agonists
1
neuronal
1

Similar Publications

Using electrophysiology, the effect of nicotinic acetylcholine receptor (nAChR) ligands on acetylcholine-induced depolarization in the neurons of Helix lucorum snail was studied. It was found that the α-conotoxin PnIA [R9, L10], a selective antagonist of α7 nAChR, and α-cobratoxin (antagonist of α7 and muscle-type nAChR) suppressed neuronal depolarization. Fluorescence microscopy showed staining of the neurons with fluorescently labeled α-bungarotoxin; this staining was reduced by pretreatment with α-cobratoxin.

View Article and Find Full Text PDF

Mutations in genes coding for subunits of the neuronal nicotinic acetylcholine receptor (nAChR) have been involved in familial sleep-related hypermotor epilepsy (also named autosomal dominant nocturnal frontal lobe epilepsy, ADNFLE). Most of these mutations reside in and genes, coding for the α4 and β2 nAChR subunits, respectively. Two mutations with contrasting functional effects were also identified in the gene coding for the α2 subunit.

View Article and Find Full Text PDF

Neuronal nicotinic acetylcholine receptors (nAChRs) of the cholinergic system have been linked to antinociception, and therefore could be an alternative target for pain alleviation. nAChR activity has been shown to be regulated by the nicotinic modulator, lynx1, which forms stable complexes with nAChRs and has a negative allosteric action on their function. The objective in this study was to investigate the contribution of lynx1 to nicotine-mediated antinociception.

View Article and Find Full Text PDF

Elucidation of the structural basis of pharmacological differences for highly homologous α7 and α9 nicotinic acetylcholine receptors (nAChRs) may shed light on their involvement in different physiological functions and diseases. Combination of site-directed mutagenesis and electrophysiology is a powerful tool to pinpoint the key amino-acid residues in the receptor ligand-binding site, but for α7 and α9 nAChRs it is complicated by their poor expression and fast desensitization. Here, we probed the ligand-binding properties of α7/α9 nAChR mutants by a proposed simple and fast calcium imaging method.

View Article and Find Full Text PDF

Nicotinic acetylcholine receptors (nAChR's) containing the α6 subunit (α6) are putative drug targets of relevance to Parkinson's disease and nicotine addiction. However, heterologous expression of α6 receptors has proven challenging which has stifled drug discovery efforts. Here, we investigate potential new avenues for achieving functional α6 receptor expression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!