Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The specific aim of our investigation is to study the potential use of a collagen/heparin-carrying polystyrene (HCPS) composite extracellular matrix for articular cartilage tissue engineering. Here, we created a high-performance extracellular matrix (HpECM) scaffold to build an optimal extracellular environment using an HCPS we originally developed, and an atelocollagen honeycomb-shaped-scaffold (ACHMS-scaffold) with a membrane seal. This scaffold was coated with HCPS to enable aggregation of heparin-binding growth factors such as FGF-2 and TGF-beta1 within the scaffold. Three-dimensional culture of rabbit articular chondrocytes within the HpECM-scaffold and subsequent preparation of a tissue-engineered cartilage were investigated. The results showed remarkably higher cell proliferative activity within the HpECM-pretreated-FGF-2 scaffold and the sustenance of phenotype within the HpECM-pretreated-TGF-beta1 scaffold. It was thought that both FGF-2 and TGF-beta1 were stably immobilized in the HpEMC-scaffold since HCPS generated an extracellular environment similar to that of heparan sulfate proteoglycan within the scaffold. These results suggest that an ACHMS-scaffold immobilized with HCPS can be a HpECM for cartilage regeneration to retain the heparin-binding growth factors within the scaffolds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbm.b.30782 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!