There are currently no nonhuman primate models with fully defined major histocompatibility complex (MHC) class II genetics. We recently showed that six common MHC haplotypes account for essentially all MHC diversity in cynomolgus macaques (Macaca fascicularis) from the island of Mauritius. In this study, we employ complementary DNA cloning and sequencing to comprehensively characterize full length MHC class II alleles expressed at the Mafa-DPA, -DPB, -DQA, -DQB, -DRA, and -DRB loci on the six common haplotypes. We describe 34 full-length MHC class II alleles, 12 of which are completely novel. Polymorphism was evident at all six loci including DPA, a locus thought to be monomorphic in rhesus macaques. Similar to other Old World monkeys, Mauritian cynomolgus macaques (MCM) share MHC class II allelic lineages with humans at the DQ and DR loci, but not at the DP loci. Additionally, we identified extensive sharing of MHC class II alleles between MCM and other nonhuman primates. The characterization of these full-length-expressed MHC class II alleles will enable researchers to generate MHC class II transferent cell lines, tetramers, and other molecular reagents that can be used to explore CD4+ T lymphocyte responses in MCM.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2836927 | PMC |
http://dx.doi.org/10.1007/s00251-007-0209-7 | DOI Listing |
Int J Mol Sci
December 2024
Moores Cancer Center, University of California San Diego, San Diego, CA 92037, USA.
The discovery of tumor-derived neoantigens which elicit an immune response through major histocompatibility complex (MHC-I/II) binding has led to significant advancements in immunotherapy. While many neoantigens have been discovered through the identification of non-synonymous mutations, the rate of these is low in some cancers, including head and neck squamous cell carcinoma. Therefore, the identification of neoantigens through additional means, such as aberrant splicing, is necessary.
View Article and Find Full Text PDFPLoS One
January 2025
Foot and Mouth Disease Department, National Veterinary Research Institute, Vom, Plateau State, Nigeria.
The global public health risk posed by Salmonella Kentucky (S. Kentucky) is rising, particularly due to the dissemination of antimicrobial resistance genes in human and animal populations. This serovar, widespread in Africa, has emerged as a notable cause of non-typhoidal gastroenteritis in humans.
View Article and Find Full Text PDFCell Biol Toxicol
January 2025
Department of Medical Oncology, the First Hospital of China Medical University, Shenyang, Liaoning, China.
Background: Microsatellite instability-high (MSI-H) metastatic colorectal cancer (CRC) patients are the dominant population in immune checkpoint blockade treatments, while more than half of them could not benefit from single-agent immunotherapy. We tried to identify the biomarker of MSI-H CRC and explore its role and mechanism in anti-PD-1 treatments. Tumor-specific MHC-II was linked to a better response to anti-PD-1 in MSI-H CRC and CD74 promoted assembly and transport of HLA-DR dimers.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Biochemistry and Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104.
Class I major histocompatibility complex (MHC-I) proteins play a pivotal role in adaptive immunity by displaying epitopic peptides to CD8+ T cells. The chaperones tapasin and TAPBPR promote the selection of immunogenic antigens from a large pool of intracellular peptides. Interactions of chaperoned MHC-I molecules with incoming peptides are transient in nature, and as a result, the precise antigen proofreading mechanism remains elusive.
View Article and Find Full Text PDFJ Neuroinflammation
January 2025
Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M Health Science Center, Bryan, TX, 77807-3260, USA.
Background: Disturbances of the sleep-wake cycle and other circadian rhythms typically precede the age-related deficits in learning and memory, suggesting that these alterations in circadian timekeeping may contribute to the progressive cognitive decline during aging. The present study examined the role of immune cell activation and inflammation in the link between circadian rhythm dysregulation and cognitive impairment in aging.
Methods: C57Bl/6J mice were exposed to shifted light-dark (LD) cycles (12 h advance/5d) during early adulthood (from ≈ 4-6mo) or continuously to a "fixed" LD12:12 schedule.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!