Magnetic fields (MFs) are receiving much attention in basic research due to their emerging ability to alter intracellular signaling. We show here that static MFs with intensity of 6 mT significantly alter the intracellular redox balance of U937 cells. A strong increase of reactive oxygen species (ROS) and a decrease of glutathione (GSH) intracellular levels were found after 2 h of MF exposure and maintained thereafter. We found that also other types of MFs, such as extremely-low-frequency (ELF) MFs affect intracellular GSH starting from a threshold at 0.09 mT. We previously reported that static MFs in the intensity range of 0.3-60 mT reduce apoptosis induced by damaging agents (Fanelli et al., 1998). Here, we show that ELF-MFs are also able to protect U937 from apoptosis. Interestingly, this ability is limited to the ELF intensities able to alter redox equilibrium, indicating a link between MF's antiapoptotic effect and the MF alteration of intracellular redox balance. This suggests that MF-produced redox alterations may be part of the signaling pathway leading to apoptosis antagonism. Thus, we tested whether MFs may still exert an antiapoptotic action in cells where the redox state was artificially altered in both directions, that is, by creating an oxidative (via GSH depletion with BSO) or a reducing (with DTT) cellular environment. In both instances, MFs fail to affect apoptosis. Thus, a correct intracellular redox state is required in order for MFs to exert their antiapoptotic effect.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1196/annals.1378.006 | DOI Listing |
Mol Plant
January 2025
Division of Applied Life Sciences (BK21(+)), Plant Biological Rhythm Research Center and PMBBRC, Gyeongsang National University, Jinju-52828, Korea. Electronic address:
The intricate interplay between cellular circadian rhythms, primarily manifested in the chloroplast redox oscillations-characterized by diel hyperoxidation/reduction cycles of 2-Cys Peroxiredoxins-and the nuclear transcription/translation feedback loop (TTFL) machinery within plant cells, demonstrates a remarkable temporal coherence. However, the molecular mechanisms underlying the integration of these circadian rhythms remain elusive. Here, we elucidate that the chloroplast redox protein, NADPH-dependent thioredoxin reductase type-C (NTRC), modulates the integration of the chloroplast redox rhythms and nuclear circadian clocks by regulating intracellular levels of reactive oxygen species and sucrose.
View Article and Find Full Text PDFRespir Res
January 2025
Department of Thoracic Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
Background: Pulmonary arterial hypertension (PAH) is a progressive disorder that can lead to right ventricular failure and severe consequences. Despite extensive efforts, limited progress has been made in preventing the progression of PAH. Mitochondrial dysfunction is implicated in the development of PAH, but the key mitochondrial functional alterations in the pathogenesis have yet to be elucidated.
View Article and Find Full Text PDFNat Commun
January 2025
College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China.
Reconstructing large, inflammatory maxillofacial defects using stem cell-based therapy faces challenges from adverse microenvironments, including high levels of reactive oxygen species (ROS), inadequate oxygen, and intensive inflammation. Here, inspired by the reaction mechanisms of intracellular antioxidant defense systems, we propose the de novo design of an artificial antioxidase using Ru-doped layered double hydroxide (Ru-hydroxide) for efficient redox homeostasis and maxillofacial bone regeneration. Our studies demonstrate that Ru-hydroxide consists hydroxyls-synergistic monoatomic Ru centers, which efficiently react with oxygen species and collaborate with hydroxyls for rapid proton and electron transfer, thus exhibiting efficient, broad-spectrum, and robust ROS scavenging performance.
View Article and Find Full Text PDFJ Control Release
January 2025
State Key Laboratory of Natural Medicines, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China; NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China; Department of Pharmaceutics, School of Pharmacy, 639 Longmian Avenue, Nanjing 211198, China. Electronic address:
Active-targeting nanomedicines have been widely employed in cancer treatment for increasing therapeutic index. However, the limited permeability caused by the binding site barrier (BSB) and size hindrances compromises their clinical antitumor efficacy in patients. Herein, learning from the liquid-liquid phase separation (LLPS) of bio-macromolecules, we report phase-separating glycopeptides (HEP) from polyhistidine (PHis) grafted hyaluronic acid (HA), which can sense the tumor extracellular pH and concomitantly overcome size and BSB dilemmas for enhanced tumor penetration.
View Article and Find Full Text PDFVirulence
December 2025
Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon, South Korea.
(Mab), a nontuberculous mycobacterium, is increasing in prevalence worldwide and causes treatment-refractory pulmonary diseases. However, how Mab rewires macrophage energy metabolism to facilitate its survival is poorly understood. We compared the metabolic profiles of murine bone marrow-derived macrophages (BMDMs) infected with smooth (S)- and rough (R)-type Mab using extracellular flux technology.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!