PDZ domains are protein-protein interaction modules that generally bind to the C termini of their target proteins. The C-terminal four amino acids of a prospective binding partner of a PDZ domain are typically the determinants of binding specificity. In an effort to determine the structures of a number of PDZ domains we have included appropriate four residue extensions on the C termini of PDZ domain truncation mutants, designed for self-binding. Multiple truncations of each PDZ domain were generated. The four residue extensions, which represent known specificity sequences of the target PDZ domains and cover both class I and II motifs, form intermolecular contacts in the expected manner for the interactions of PDZ domains with protein C termini for both classes. We present the structures of eight unique PDZ domains crystallized using this approach and focus on four which provide information on selectivity (PICK1 and the third PDZ domain of DLG2), binding site flexibility (the third PDZ domain of MPDZ), and peptide-domain interactions (MPDZ 12th PDZ domain). Analysis of our results shows a clear improvement in the chances of obtaining PDZ domain crystals by using this approach compared to similar truncations of the PDZ domains without the C-terminal four residue extensions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2203335PMC
http://dx.doi.org/10.1110/ps.062657507DOI Listing

Publication Analysis

Top Keywords

pdz domains
28
pdz domain
28
pdz
14
residue extensions
12
truncations pdz
8
third pdz
8
domains
7
domain
7
structure pick1
4
pick1 pdz
4

Similar Publications

Structural Evidence for DUF512 as a Radical -Adenosylmethionine Cobalamin-Binding Domain.

ACS Bio Med Chem Au

December 2024

Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.

Cobalamin (Cbl)-dependent radical -adenosylmethionine (SAM) enzymes constitute a large subclass of radical SAM (RS) enzymes that use Cbl to catalyze various types of reactions, the most common of which are methylations. Most Cbl-dependent RS enzymes contain an N-terminal Rossmann fold that aids Cbl binding. Recently, it has been demonstrated that the methanogenesis marker protein 10 (Mmp10) requires Cbl to methylate an arginine residue in the α-subunit of methyl coenzyme M reductase.

View Article and Find Full Text PDF

Unlabelled: The misfolding, aggregation, and the seeded spread of alpha synuclein (α-Syn) aggregates are linked to the pathogenesis of various neurodegenerative diseases, including Parkinson's disease (PD). Understanding the mechanisms by which chaperone proteins prevent the production and seeding of α-Syn aggregates is crucial for developing effective therapeutic leads for tackling neurodegenerative diseases. We show that a catalytically inactive variant of the chaperone HtrA1 (HtrA1*) effectively inhibits both α-Syn monomer aggregation and templated fibril seeding, and demonstrate that this inhibition is mediated by synergistic interactions between its PDZ and Protease domains and α-Syn.

View Article and Find Full Text PDF

Towards the design of ligands of the internal pocket TEADs C-terminal domain.

Eur J Med Chem

January 2025

Univ Lille, INSERM, CHU Lille, UMR-S 1172, Lille Neuroscience and Cognition Research Center, F-59000, Lille, France; ENSCL-Centrale Lille, CS 90108, F-59652, Villeneuve d'Ascq, France.

The Hippo pathway controls in organ size and tissue homeostasis through regulating cell growth, proliferation and apoptosis. Phosphorylation of the transcription co-activator YAP (Yes associated protein) and TAZ (Transcriptional coactivator with PDZ-binding motif) regulates their nuclear import and therefore their interaction with TEAD (Transcriptional Enhanced Associated Domain). YAP, TAZ and TEADs are dysregulated in several solid cancers making YAP/TAZ-TEAD interaction a new anti-cancer target.

View Article and Find Full Text PDF

Structural insights into regulated intramembrane proteolysis by the positive alginate regulator MucP from Pseudomonas aeruginosa.

Biochem Biophys Res Commun

December 2024

College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin 300071, China; Tianjin Key Laboratory of Protein Science, Nankai University, Tianjin 300071, China. Electronic address:

Regulated intramembrane proteolysis (RIP) is a fundamentally conserved mechanism involving sequential cleavage by a membrane-bound Site-1 protease (S1P) and a transmembrane Site-2 protease (S2P). In the opportunistic pathogen Pseudomonas aeruginosa, the alternate sigma factor σ activates alginate production and in turn is regulated by the MucABCD system. The anti-sigma factor MucA, which inhibits σ, is sequentially cleaved via RIP by AlgW (S1P) and MucP (S2P) respectively.

View Article and Find Full Text PDF

A PDZ tandem repeat folds and unfolds via different pathways.

Protein Sci

December 2024

Dipartimento di Scienze Biochimiche "A. Rossi Fanelli, " Sapienza Università di Roma, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy.

Protein folding and unfolding experiments are interpreted under the assumption of microscopic reversibility, that is, that at equilibrium one process is the reverse of the other. Single-domain proteins illustrate the validity of such an interpretation, although reversibility does not necessarily hold under the different conditions typically used for folding and unfolding experiments. In fact, more complex proteins, which often exhibit irreversible unfolding, are generally considered not amenable to folding kinetics studies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!