Auxin transport plays a significant role modifying plant growth and development in response to environmental signals such as light and gravity. However, the effect of humidity on auxin transport is rarely documented. It is shown here that the transport of labelled indole-3-acetic acid (IAA) from the shoot to the root is accelerated in rice (Oryza sativa L. ssp. indica cv. IR8) seedlings grown under saturated humidity (SH-seedlings) compared with plants grown under normal humidity (NH-seedlings). The development of lateral roots in SH-seedlings was greatly enhanced compared with NH-seedlings. Removal of the shoot from SH-seedlings reduced the density of lateral roots, and the application of IAA to the cut stem restored the lateral root density, while the decapitation of NH-seedlings did not alter lateral root development. Phloem-based auxin transport appeared responsible for enhanced lateral root formation in SH-seedlings since (i) the rate of IAA transport from the shoot to the root tip was greater than 3.5 cm h-1 and (ii) naphthylphthalamic acid (NPA)-induced reduction of polar auxin transport in the shoot did not influence the number of lateral roots in SH-seedlings. It is proposed that high humidity conditions accelerate the phloem-based transport of IAA from the leaf to the root, resulting in an increase in the number of lateral roots.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jxb/erm026 | DOI Listing |
Nat Commun
January 2025
State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
Ideal root system architecture (RSA) is important for efficient nutrient uptake and high yield in crops. We cloned and characterized a key RSA regulatory gene, GRAVITROPISM LOSS 1 (OsGLS1), in rice (Oryza sativa L.).
View Article and Find Full Text PDFPhysiol Mol Biol Plants
December 2024
Department of Grassland Science, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009 China.
Unlabelled: Auxin response factors (ARFs) are important transcription factors that regulate the expression of auxin response genes, thus play crucial roles in plant growth and development. However, the functions of genes in bermudagrass ( L.), a turfgrass species of great economic value, remain poorly understood.
View Article and Find Full Text PDFFront Plant Sci
December 2024
College of Life Sciences, Fujian Agriculture and Forestry University, Fujian, China.
The mitochondrial pyruvate dehydrogenase complex (PDC) plays a crucial role in linking the glycolysis pathway and the tricarboxylic acid (TCA) cycle. Previously, we reported that a mutation of , encoding an E1β subunit of PDC, affects the abundance of auxin efflux carriers PIN-FORMED proteins (PINs) via reduced recycling and enhanced degradation in vacuoles. Here, we further analyzed the effects of TCA cycle inhibition on vesicle trafficking using both the mutant and 3-BP, a TCA cycle inhibitor.
View Article and Find Full Text PDFBMC Plant Biol
December 2024
Tea Research Institute, Anhui Academy of Agricultural Sciences, Huangshan, 245000, China.
Background: Adventitious root (AR) formation is the key step for successful cutting propagation of tea plants (Camellia sinensis L.). Studies showed that arbuscular mycorrhizal fungus (AMF) can promote the rooting ability, and auxin pathway in basal stem of cuttings was involved in this process.
View Article and Find Full Text PDFNew Phytol
December 2024
Key Lab of Organic-based Fertilizers of China and Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China.
Sinomonas species typically reside in soils or the rhizosphere and can promote plant growth. Sinomonas enrichment in rhizospheric soils is positively correlated with increases in plant biomass. However, the growth promotion mechanisms regulated by Sinomonas remain unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!