We investigate JAK-STAT5 activation and its relationship to full-length Stat5B (FL-Stat5) and constitutive phosphorylated carboxy-truncated Stat5B (ct-pStat5) in four different strains of mouse. Our electrophoresis mobility shift assays data indicate constitutive phosphorylation of full-length-Stat5 (p<0.001) and DNA binding in NOD but not in B6 mice. Our data suggest that the relative ratio of FL-Stat5: ct-Stat5 in NOD is 5- to 8-fold lower (p<0.0001) when compared with normal B6 mice. Additionally, EMSAs data from B6.NOD/c11 suggest contribution of Idd4 susceptibility locus on chromosome 11 in constitutive phosphorylation of Stat5 in NOD mice. The presence of ct-pStat5 in regulatory T cells of NOD mice suggests this form of Stat5 is associated with impaired function of Tregs in NOD mouse. In agreement with our previous report the JAK-Stat5B defective pathway in NOD mice along with other defective factors is associated with the pathogenesis of autoimmune type 1 diabetes in NOD mice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2007.03.028 | DOI Listing |
Biochem Biophys Res Commun
May 2007
Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA.
We investigate JAK-STAT5 activation and its relationship to full-length Stat5B (FL-Stat5) and constitutive phosphorylated carboxy-truncated Stat5B (ct-pStat5) in four different strains of mouse. Our electrophoresis mobility shift assays data indicate constitutive phosphorylation of full-length-Stat5 (p<0.001) and DNA binding in NOD but not in B6 mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!