Food web analysis in two permanently open temperate estuaries: consequences of saltmarsh loss?

Mar Environ Res

Department of Marine Ecology, Göteborg University, Box 461, SE 405 30 Göteborg, Sweden.

Published: September 2007

Saltmarsh vegetation, seston and microphytobenthos are all conspicuous components of most temperate estuaries and they potentially contribute to the estuarine food chain. Yet their relative contributions are unclear, as is the significance of saltmarsh losses through natural and human-induced impacts. This study aimed to quantitatively determine the contribution of various types of primary producers to detritus in the Walpole-Nornalup Estuary and Leschenault Inlet, two permanently open estuaries in SW Australia, and, estimate the flow of different types of detritus to higher trophic levels, using carbon ((13)C) and nitrogen ((15)N) stable isotopes as tracers. Results of the mixing model indicated that seston, microphytobenthos and to some extent seagrass and fringing saltmarsh were the main contributors to the detrital pool in both estuaries. However, the relative contribution of different primary producers varied both within and between estuaries. The contribution of saltmarsh was higher at sites close to rivers and dense fringing vegetation, while seston, microphytobenthos and seagrass dominated the detrital material at other sites. Benthic harpacticoid copepods were shown to feed on detritus though they appeared to actively select for different components of the detritus depending on site and estuary. Isotopic signatures of other consumers indicated that fish and invertebrates derived nutrients from MPB and detritus, either directly as food or indirectly through feeding on invertebrates. The overall contribution of saltmarsh to detritus was lower in Leschenault Inlet than in Walpole-Nornalup Estuary, possibly as a result of increased clearing of fringing vegetation around Leschenault Inlet. This pattern was however not reflected in harpacticoid food. Therefore, although losses of fringing saltmarsh around estuaries have the potential to significantly affect estuarine food webs, the significance of such losses will be site- and estuary-dependent.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.marenvres.2007.02.002DOI Listing

Publication Analysis

Top Keywords

seston microphytobenthos
12
leschenault inlet
12
permanently open
8
temperate estuaries
8
vegetation seston
8
estuarine food
8
primary producers
8
walpole-nornalup estuary
8
fringing saltmarsh
8
contribution saltmarsh
8

Similar Publications

Food web analysis in two permanently open temperate estuaries: consequences of saltmarsh loss?

Mar Environ Res

September 2007

Department of Marine Ecology, Göteborg University, Box 461, SE 405 30 Göteborg, Sweden.

Saltmarsh vegetation, seston and microphytobenthos are all conspicuous components of most temperate estuaries and they potentially contribute to the estuarine food chain. Yet their relative contributions are unclear, as is the significance of saltmarsh losses through natural and human-induced impacts. This study aimed to quantitatively determine the contribution of various types of primary producers to detritus in the Walpole-Nornalup Estuary and Leschenault Inlet, two permanently open estuaries in SW Australia, and, estimate the flow of different types of detritus to higher trophic levels, using carbon ((13)C) and nitrogen ((15)N) stable isotopes as tracers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!