SB-277011-A is a dopamine D(3) receptor antagonist that exhibits over 100-fold selectivity over dopamine D(2) receptors and a broad spectrum of other receptor, ion channels, and enzymes. We employed c-Fos immunohistochemistry to characterise the functional neuroanatomical effects of acute administration of SB-277011-A and observed a time-dependent increase in the density of c-Fos-like positive nuclei in rat forebrain with maximal effects observed 2 h post-dose. The relative influence of the different brain regions on the overall effect of SB-277011-A was ranked by partial least squares discriminant analysis loadings plot which indicated that sites within the nucleus accumbens exerted the greatest influence on the separation of the vehicle and SB-277011-A treatment groups. At the 2 h time-point, c-Fos-like expression was shown to be significantly elevated (p<0.05) in the core and shell of the nucleus accumbens, at both rostral and caudal levels, and in the lateral septum. No significant changes were detected in the caudate nucleus (lateral or medial) or in the cingulate, infralimbic prefrontal, or somatosensory cortices. The capacity of SB-277011-A to trigger immediate early gene expression in these limbic regions of rat brain adds to a growing consensus of the potential utility of dopamine D(3) receptor antagonism in psychiatric disorders including schizophrenia and drug dependency.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainres.2007.02.051DOI Listing

Publication Analysis

Top Keywords

dopamine receptor
8
receptor antagonist
8
c-fos-like expression
8
rat forebrain
8
sb-277011-a
5
selective dopamine
4
antagonist sb-277011-a
4
sb-277011-a regional
4
regional c-fos-like
4
expression rat
4

Similar Publications

D1 Receptor Functional Asymmetry at Striatonigral Neurons: A Neurochemical and Behavioral Study in Male Wistar Rats.

J Neurosci Res

January 2025

Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico, Mexico.

Lateralization of motor behavior, a common phenomenon in humans and several species, is modulated by the basal ganglia, a site pointed out for the interhemispheric differences related to lateralization. Our study aims to shed light on the potential role of the striatonigral D1 receptor in functional asymmetry in normal conditions through neurochemical and behavioral means. We found that D1 receptor activation and D1/D3 receptor coactivation in striatonigral neurons leads to more cAMP production by adenylyl cyclase in the striatum and GABA release in their terminals in the right hemisphere compared to the left.

View Article and Find Full Text PDF

In narcolepsy with cataplexy, sodium oxybate and the recently FDA-approved drug pitolisant are preferred medications. Armodafinil, a longer-acting, non-amphetamine stimulant, is often used in patients who have narcolepsy without cataplexy. It enhances alertness by increasing presynaptic dopamine transmission presynaptically, amplifying serotonin in the cerebral cortex, activating glutamatergic circuits, which may contribute to its vigilance-enhancing properties, and stimulating orexin activity.

View Article and Find Full Text PDF

Investigating the Mechanisms Involved in Scopolamine-induced Memory Degradation.

Arch Razi Inst

June 2024

Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.

In the present study, the mechanisms involved in scopolamine-induced memory impairment have been investigated. The molecular events that take place during memory mostly include mechanisms that are seen in the acquisition phase. Results showed that one of the mechanisms of memory destruction caused by scopolamine, in addition to weakening the cholinergic system, is the indirect effect of scopolamine on other neurotransmitter systems, including the glutamatergic system.

View Article and Find Full Text PDF

Taltirelin, an orally effective thyrotropin-releasing hormone analog, significantly improves motor impairments in rat models of Parkinson's disease (PD) and enhances dopamine release within the striatum. However, the underlying mechanism remains unclear. In this study, a variety of in vivo and in vitro methods, including transcriptomic analysis, were employed to elucidate the effects of Taltirelin on cellular composition and signaling pathways in the striatum of hemi-PD rats.

View Article and Find Full Text PDF

Chemistry to cognition: Therapeutic potential of (m-CF-PhSe) targeting rats' striatum dopamine proteins in amphetamine dependence.

Prog Neuropsychopharmacol Biol Psychiatry

December 2024

Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas (LaftamBio Pampa), Universidade Federal do Pampa, Itaqui, RS, Brazil. Electronic address:

Amphetamine (AMPH) abuse represents a major global public health issue, highlighting the urgent need for effective therapeutic interventions to manage addiction caused by this psychostimulant. This study aimed to assess the potential of m-trifluoromethyl-diphenyldiselenide [(m-CF-PhSe)] in preventing the addictive effects induced by AMPH through targeting dopamine metabolism proteins. (m-CF-PhSe) is of interest due to its demonstrated efficacy in mitigating opioid abuse, establishing it as a promising candidate for addiction treatment research.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!