A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Multivariate techniques and their application in nutrition: a metabolomics case study. | LitMetric

AI Article Synopsis

  • Post-genomic technologies produce large data sets that many nutritional scientists struggle to analyze due to a lack of computational training and tools.
  • High-resolution NMR (nuclear magnetic resonance) spectra of urine require advanced computational techniques to interpret the complex data influenced by various biological factors, especially in nutritional studies where diet changes affect gene expression and metabolite levels.
  • This study explores the application of multivariate methods like principal component analysis and partial least squares on NMR data from a dietary copper intervention, highlighting the necessity of feature subset selection and the use of genetic algorithms to identify significant changes in low-concentration metabolites.

Article Abstract

The post-genomic technologies are generating vast quantities of data but many nutritional scientists are not trained or equipped to analyse it. In high-resolution NMR spectra of urine, for example, the number and complexity of spectral features mean that computational techniques are required to interrogate and display the data in a manner intelligible to the researcher. In addition, there are often multiple underlying biological factors influencing the data and it is difficult to pinpoint which are having the most significant effect. This is especially true in nutritional studies, where small variations in diet can trigger multiple changes in gene expression and metabolite concentration. One class of computational tools that are useful for analysing this highly multivariate data include the well-known 'whole spectrum' methods of principal component analysis and partial least squares. In this work, we present a nutritional case study in which NMR data generated from a human dietary Cu intervention study is analysed using multivariate methods and the advantages and disadvantages of each technique are discussed. It is concluded that an alternative approach, called feature subset selection, will be important in this type of work; here we have used a genetic algorithm to identify the small peaks (arising from metabolites of low concentration) that have been altered significantly following a dietary intervention.

Download full-text PDF

Source
http://dx.doi.org/10.1017/S0007114507685365DOI Listing

Publication Analysis

Top Keywords

case study
8
dietary intervention
8
data
5
multivariate techniques
4
techniques application
4
application nutrition
4
nutrition metabolomics
4
metabolomics case
4
study post-genomic
4
post-genomic technologies
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: