Seventy-eight dogs with pain from hip dysplasia participated in a six-month placebo-controlled, double-blinded clinical trial of gold bead implantation. In the present, non-blinded study, 73 of these dogs were followed for an additional 18 months to evaluate the long-term pain-relieving effect of gold bead implantation. The recently-published results of the six month period revealed that 30 of the 36 dogs (83%) in the gold implantation group showed significant improvement (p = 0.02), included improved mobility and reduction in the signs of pain, compared to the placebo group (60% improvement). In the long-term two-year follow-up study, 66 of the 73 dogs had gold implantation and seven dogs continued as a control group. The 32 dogs in the original placebo group had gold beads implanted and were followed for a further 18 months. A certified veterinary acupuncturist used the same procedure to insert the gold beads as in the blinded study, and the owners completed the same type of detailed questionnaires. As in the blinded study, one investigator was responsible for all the assessments of each dog. The present study revealed that the pain-relieving effect of gold bead implantation observed in the blinded study continued throughout the two-year follow-up period.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1851017 | PMC |
http://dx.doi.org/10.1186/1751-0147-49-9 | DOI Listing |
Anal Chim Acta
January 2025
Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan; Institute of NanoEngineering and Microsystems, National Tsing Hua University, Hsinchu, Taiwan. Electronic address:
Background: Rheumatoid arthritis (RA) is a chronic autoimmune disease that causes joint damage and progressive destruction of adjacent cartilage and bones. Quick and accurate detection of rheumatoid factors (RF) and anti-cyclic citrullinated peptide antibodies (anti-CCP) in serum is effective in diagnosing RA and preventing its progression. However, current methods for detecting these two biomarkers are costly, time-consuming, labor-intensive, and require specialized equipment.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Department of Chemical Engineering, Graduate School of Science and Engineering, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065, Japan.
Calcium alginate hydrogel is one of the most widely used materials for drug-carrier beads used in drug-delivery systems. In this study, we developed a new method to improve the encapsulation efficiency of ingredients, such as medicines, in calcium alginate hydrogel beads. In the gold standard method, the hydrogel beads are prepared in the liquid phase.
View Article and Find Full Text PDFBiosens Bioelectron
December 2024
Centre for Biomedicine, Hull York Medical School, University of Hull, Hull HU6 7RX, United Kingdom. Electronic address:
Early detection of hepatitis C virus (HCV) infection is crucial for eliminating this silent killer, especially in resource-limited settings. HCV core antigen (HCVcAg) represents a promising alternative to the current "gold standard" HCV RNA assays as an active viremia biomarker. Herein, a highly sensitive electrochemical magneto-immunosensor for the HCVcAg was developed.
View Article and Find Full Text PDFACS Sens
January 2025
Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, Michigan 48202, United States.
Bioanalytical sensors are adept at quantifying target analytes from complex sample matrices with high sensitivity, but their multiplexing capacity is limited. Conversely, analytical separations afford great multiplexing capacity but typically require analyte labeling to increase sensitivity. Here, we report the development of a separation-based sensor to sensitively quantify unlabeled polysaccharides using particle motion tracking within a microfluidic electrophoresis platform.
View Article and Find Full Text PDFSmall Methods
January 2025
College of Control Science and Engineering, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, Zhejiang Province, 310027, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!