MSL complex associates with clusters of actively transcribed genes along the Drosophila male X chromosome.

Cold Spring Harb Symp Quant Biol

Harvard-Partners Center for Genetics and Genomics, Brigham & Women's Hospital, Boston, Massachusetts 02115, USA.

Published: June 2007

AI Article Synopsis

  • Dosage compensation in Drosophila highlights how the MSL complex helps balance gene expression between male and female by enhancing transcription of the male's single X chromosome.
  • Recruitment of the MSL complex to the X chromosome involves all MSL proteins and noncoding roX RNAs, with binding largely observed at clusters of actively transcribed genes.
  • The study uses genomic techniques to identify MSL-complex-binding sites, which could shed light on the role of large noncoding RNAs in gene regulation.

Article Abstract

Dosage compensation in Drosophila serves as a model system for understanding the targeting of chromatin-modifying complexes to their sites of action. The MSL (male-specific lethal) complex up-regulates transcription of the single male X chromosome, thereby equalizing levels of transcription of X-linked genes between the sexes. Recruitment of the MSL complex to its binding sites on the male X chromosome requires each of the MSL proteins and at least one of the two large noncoding roX RNAs. To better understand how the MSL complex specifically targets the X chromosome, we have defined the binding using high-resolution genomic tiling arrays. Our results indicate that the MSL complex largely associates with transcribed genes that are present in clusters along the X chromosome. We hypothesize that after initial recruitment of the MSL complex to the X chromosome by unknown mechanisms, nascent transcripts or chromatin marks associated with active transcription attract the MSL complex to its final targets. Defining MSL-complex-binding sites will provide a tool for understanding functions of large noncoding RNAs that have remained elusive.

Download full-text PDF

Source
http://dx.doi.org/10.1101/sqb.2006.71.026DOI Listing

Publication Analysis

Top Keywords

msl complex
24
male chromosome
12
msl
8
complex associates
8
transcribed genes
8
recruitment msl
8
large noncoding
8
chromosome
6
complex
6
associates clusters
4

Similar Publications

Dynamics and regulatory roles of RNA mA methylation in unbalanced genomes.

Elife

January 2025

Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China.

-methyladenosine (mA) in eukaryotic RNA is an epigenetic modification that is critical for RNA metabolism, gene expression regulation, and the development of organisms. Aberrant expression of mA components appears in a variety of human diseases. RNA mA modification in has proven to be involved in sex determination regulated by and may affect X chromosome expression through the MSL complex.

View Article and Find Full Text PDF

Adoptive cell therapy with tumor-infiltrating lymphocytes (TIL) can mediate tumor regression, including complete and durable responses, in a range of solid cancers, most notably in melanoma. However, its wider application and efficacy has been restricted by the limited accessibility, proliferative capacity and effector function of tumor-specific TIL. Here, we develop a platform for the efficient identification of tumor-specific TCR genes from diagnostic tumor biopsies, including core-needle biopsies frozen in a non-viable format, to enable engineered T cell therapy.

View Article and Find Full Text PDF

A noncanonical role of roX RNAs in autosomal epigenetic repression.

Nat Commun

January 2025

Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.

Article Synopsis
  • roX RNAs are essential for male development in Drosophila, and their absence leads to male lethality during late larval stages.
  • They are known for their role in balancing X-linked gene expression but have shown to also target autosomal genes, which had not been extensively studied before.
  • The research highlights that roX RNAs function as both activators of X-linked genes and repressors of autosomal genes through their interactions with specific protein complexes, revealing a complex role in gene regulation.
View Article and Find Full Text PDF

N-terminus of MSL1 is critical for dosage compensation.

Elife

December 2024

Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russian Federation.

The male-specific lethal complex (MSL), which consists of five proteins and two non-coding roX RNAs, is involved in the transcriptional enhancement of X-linked genes to compensate for the sex chromosome monosomy in XY males compared with XX females. The MSL1 and MSL2 proteins form the heterotetrameric core of the MSL complex and are critical for the specific recruitment of the complex to the high-affinity 'entry' sites (HAS) on the X chromosome. In this study, we demonstrated that the N-terminal region of MSL1 is critical for stability and functions of MSL1.

View Article and Find Full Text PDF

Leveraging Multi-omics to Disentangle the Complexity of Ovarian Cancer.

Mol Diagn Ther

November 2024

Divisions of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Denver, Anschutz Medical Campus, 12700 East 19th Avenue, MS 8613, Aurora, CO, 80045, USA.

To better understand ovarian cancer lethality and treatment resistance, sophisticated computational approaches are required that address the complexity of the tumor microenvironment, genomic heterogeneity, and tumor evolution. The ovarian cancer tumor ecosystem consists of multiple tumors and cell types that support disease growth and progression. Over the last two decades, there has been a revolution in -omic methodologies to broadly define components and essential processes within the tumor microenvironment, including transcriptomics, metabolomics, proteomics, genome sequencing, and single-cell analyses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!