The dynamic structure factor S(Q,omega) of the refractory oxide melts MgAl2O4 and MgAl4O7 is studied by inelastic x-ray scattering with aerodynamic levitation and laser heating. This technique allows the authors to measure simultaneously the elastic response and transport properties of melts under extreme temperatures. Over the wave vector Q range of 1-8 nm-1 the data can be fitted with a generalized hydrodynamic model that incorporates a slow component described by a single relaxation time and an effectively instantaneous fast component. Their study provides estimates of high-frequency sound velocities and viscosities of the Mg-Al-O melts. In contrast to liquid metals, the dispersion of the high-frequency sound mode is found to be linear, and the generalized viscosity to be Q independent. Both experiment and simulation show a weak viscosity maximum around the MgAl4O7 composition.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.2647068 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!