Serum deprivation-induced neuronal-like PC12 cell apoptosis was used as an ischemic/hypoxic model to screen neuroprotective compounds from the rhizomes of Gastrodia elata, a traditional Chinese medicine. Two active compounds, bis(4-hydroxybenzyl)sulfide (1) and N6-(4-hydroxybenzyl)adenine riboside (2), together with 15 known compounds were obtained from the active fraction. Compound 2 was further elucidated by chemical synthesis. Compounds 1 and 2 potently prevented PC12 cell apoptosis in concentration-dependent manners with EC50 values of 7.20 microM and 3.7 x 10-8 M, respectively, and IC50 values of 42.90 microM (Ki 24.10 microM) and 4.660 microM (Ki 2.620 microM), respectively, in an adenosine A2A receptor binding assay.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/np0605182 | DOI Listing |
Int J Mol Sci
January 2025
Yunnan Key Laboratory of Dai and Yi Medicines, Yunnan University of Chinese Medicine, Kunming 650500, China.
Stroke is the leading cause of death and disability worldwide, with ischemic stroke accounting for the majority of these. HBA is the active ingredient in and has potential therapeutic effects on central nervous system diseases. In this study, the cell model of cerebral ischemia was replicated by the culture method of oxygen-glucose deprivation/reoxygenation, and the rat model of vascular dementia was established by the two-vessel occlusion method.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao. Electronic address:
Research on high-molecular-weight polysaccharides tends to be more difficult and lag in terms of their fine structures and bioavailability. We focused on Gastrodia elata Blume polysaccharides (GEPs) with different molecular weights and structural characteristics to reveal their bioactivities, especially those abundant high-molecular-weight GEPs. A novel high-yield polysaccharide (GEP1-2) with the high molecular weight of 3.
View Article and Find Full Text PDFFront Pharmacol
December 2024
College of Nursing, Changchun University of Chinese Medicine, Changchun, China.
Neurological disorders are characterized by high mortality and disability rates. Furthermore, the burden associated with disability and mortality resulting from neurological disorders has been increasing at an alarming rate. Botanical drugs and their bioactive components have emerged as a prominent area of research, offering a promising avenue for developing novel alternatives for treating neurological diseases.
View Article and Find Full Text PDFShock
December 2024
Department of Pathology and Pathophysiology, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, Yunnan, China.
Background: Sepsis-associated encephalopathy (SAE) represents a severe complication of sepsis, substantially elevating both mortality and healthcare costs for patients. Gastrodin (GAS), a principal bioactive constituent of Gastrodia elata Blume, is neuroprotective in various neurological disorders, including ischemic stroke, epilepsy, Alzheimer's disease, and neuropathic pain. In this study, we sought to investigate whether GAS could serve as a protective agent against SAE.
View Article and Find Full Text PDFJ Fungi (Basel)
November 2024
National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China.
In the industrial production of and , slow growth of the mother seed and insufficient hyphal vitality can significantly affect the cultivation process. To shorten the growth period on traditional PDA medium, two strains of and were cultured with different proportions of . and sclerotium powders added into the medium to investigate the effect on the mycelial growth.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!