Purpose: The function of ABCG2 (BCRP), a member of the ATP-binding cassette (ABC) superfamily of membrane-associated drug transporters, at the blood-brain barrier remains highly controversial. This project investigates the functional expression of endogenous ABCG2 in cultures of human and rodent brain cellular compartments.

Materials And Methods: RT-PCR, western blot and fluorescent immunocytochemical analyses were performed on ABCG2-overexpressing human breast cancer (MCF-MX100) cells, human and rat brain microvessel endothelial (HBEC and RBE4, respectively), and rat glial cells.

Results: RT-PCR analysis detected ABCG2 mRNA in all the cell culture systems. Western blot analysis with anti-ABCG2 monoclonal BXP-21 antibody detected a robust band at approximately 72 kDa in the ABCG2-overexpressing MCF-MX100 cell line, whereas low expression was found in human and rat brain cell systems. Immunofluorescence microscopy detected predominant plasma membrane localization of ABCG2 in MCF-MX100 cells but weak signal in all brain cellular compartments. In the presence of ABCG2 inhibitors, the accumulation of (3)H-mitoxantrone and pheophorbide A, two established ABCG2 substrates, was significantly increased in MCF-MX100 cells but not in the human and rodent brain cell culture systems.

Conclusions: Our data show low endogenous ABCG2 protein expression, localization and activity in cultures of human and rat brain microvessel endothelial and glial cells.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11095-007-9244-1DOI Listing

Publication Analysis

Top Keywords

human rodent
12
rodent brain
12
brain microvessel
12
microvessel endothelial
12
cell culture
12
mcf-mx100 cells
12
human rat
12
rat brain
12
atp-binding cassette
8
abcg2
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!