Thrombin inhibits migration of human hepatic myofibroblasts.

Am J Physiol Gastrointest Liver Physiol

INSERM U889, Université Victor Segalen Bordeaux 2, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France.

Published: July 2007

Several lines of data recently pointed out a role of the serine proteinase thrombin in liver fibrogenesis, but its mechanism of action is unknown. The aim of this study was to evaluate the effect of thrombin on the migration of human liver myofibroblasts. We show here that thrombin inhibits both basal migration and platelet-derived growth factor (PDGF)-BB-induced migration of myofibroblasts. By using a thrombin antagonist, a protease-activated receptor (PAR)-1 mimetic peptide, and a PAR-1 antibody, we show that this effect is dependent on the catalytic activity of thrombin and on PAR-1 activation. Thrombin's effect on basal migration was dependent on cyclooxygenase 2 (COX-2) activation because it was blocked by the COX-2 inhibitors NS-398 and nimesulide, and pharmacological studies showed that it was relayed through prostaglandin E(2) and its EP(2) receptor. On the other hand, thrombin-induced inhibition of PDGF-BB-induced migration was not dependent on COX-2. We show that thrombin inhibits PDGF-induced Akt-1 phosphorylation. This effect was consecutive to inhibition of PDGF-beta receptor activation through active dephosphorylation. Thus thrombin, through two distinct mechanisms, inhibits both basal- and PDGF-BB-induced migration of human hepatic liver myofibroblasts. The fine tuning of myofibroblast migration may be one of the mechanisms used by thrombin to regulate liver fibrogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpgi.00031.2007DOI Listing

Publication Analysis

Top Keywords

thrombin inhibits
12
migration human
12
pdgf-bb-induced migration
12
thrombin
9
migration
8
human hepatic
8
liver fibrogenesis
8
liver myofibroblasts
8
myofibroblasts thrombin
8
basal migration
8

Similar Publications

Platelet Function Assay Using Dielectric Blood Coagulometry.

Anal Chem

January 2025

Department of Anesthesiology, Tokyo Medical and Dental University, Graduate School of Medical and Dental Sciences, 1-5-45 Yushima, Bunkyo-ku 113-8510, Tokyo, Japan.

The hemostatic function of platelets is complementary to blood coagulation. However, traditional platelet function tests have primarily focused on measuring platelet aggregation, reducing their clinical effectiveness for antiplatelet drug monitoring. To address this limitation, we propose a new test principle that evaluates platelet function and the effects of antiplatelet drugs through blood coagulation reactions.

View Article and Find Full Text PDF

Inflammation and Coagulation in Neurologic and Psychiatric Disorders.

Semin Thromb Hemost

January 2025

Department of Neurology, Sheba Medical Center, Tel Ha'Shomer, Israel.

Coagulation factors are intrinsically expressed in various brain cells, including astrocytes and microglia. Their interaction with the inflammatory system is important for the well-being of the brain, but they are also crucial in the development of many diseases in the brain such as stroke and traumatic brain injury. The cellular effects of coagulation are mediated mainly by protease-activated receptors.

View Article and Find Full Text PDF

Background: Clinical expressivity of the thrombophilic factor V Leiden (FVL) mutation is highly variable. Recently, we demonstrated an increased APC (activated protein C) response in asymptomatic FVL carriers compared with FVL carriers with a history of venous thromboembolism (VTE) after in vivo coagulation activation. Here, we further explored this association using a recently developed ex vivo model based on patient-specific endothelial colony-forming cells (ECFCs).

View Article and Find Full Text PDF

Thrombomodulin (TM) expressed on endothelial cells regulates coagulation. Specific nonsense variants in the TM gene, THBD, result in high soluble TM levels causing rare bleeding disorder. In contrast, though THBD variants have been associated with venous thromboembolism, this association remains controversial.

View Article and Find Full Text PDF

Background:  We previously identified a factor (F)VIII molecular defect associated with an R2159C mutation in the C1 domain (named "FVIII-Ise") together with undetectable FVIII antigen (FVIII:Ag) levels measured by two-site sandwich ELISA using an anti-C2 domain alloantibody (alloAb). The patient had clinically mild hemophilia A, and his reduced FVIII:C correlated with FVIII:Ag measured by ELISA using monoclonal antibodies (mAbs) with A2 and A2/B domain epitopes, suggesting that the R2159C mutation modified C2 domain antigenicity.

Aim:  To investigate functional and structural characteristics of the FVIII-R2159C mutant.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!