Purpose: Full-dose gemcitabine and concurrent radiotherapy is a promising treatment approach in unresectable pancreatic cancer. This study was conducted to assess the pattern of failure and toxicity associated with the use of conformal treatment volumes, omitting prophylactic lymph node irradiation.

Methods And Materials: Seventy-four patients with locally advanced pancreatic cancer were treated between 1997 and 2005 with full-dose (1000 mg/m(2), Days 1, 8, and 15) gemcitabine and concurrent radiotherapy (36 Gy [median] in 15 daily fractions). The planning target volume (PTV) was limited to the gross tumor volume (GTV) plus 1-cm margin. Patient computed tomography (CT) scans were systematically reviewed to determine the pattern of failure. Kaplan-Meier and Cox-regression models were used to analyze freedom from local progression (FFLP), distant failure, overall survival (OS), and toxicity.

Results: With a median follow-up of 10.6 months (20.6 months in living patients), the 1-year and 2-year FFLP rates were 64% and 38%, respectively. Four patients (5%) failed in the peripancreatic lymph nodes (3 in-field and 1 marginal failure). Median OS was 11.2 months. Analyzed as a time-dependent covariate, local failure was a significant predictor of OS (p = 0.0074). Sixteen patients (22%) had significant gastrointestinal (GI) toxicity (> or = Grade 3). PTV correlated with significant GI toxicity (p = 0.007).

Conclusions: Freedom from local progression in unresectable pancreatic cancer is suboptimal. In conjunction with full-dose gemcitabine, the use of conformal fields encompassing only the GTV helps reduce toxicity and does not result in marginal failures. Our findings provide rationale for intensification of local therapy in conjunction with more effective systemic therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijrobp.2006.12.053DOI Listing

Publication Analysis

Top Keywords

pancreatic cancer
16
full-dose gemcitabine
12
gemcitabine concurrent
12
concurrent radiotherapy
12
unresectable pancreatic
12
pattern failure
8
freedom local
8
local progression
8
failure
5
full-dose
4

Similar Publications

DNA replication initiation drives focal mutagenesis and rearrangements in human cancers.

Nat Commun

December 2024

Division of Protein & Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.

The rate and pattern of mutagenesis in cancer genomes is significantly influenced by DNA accessibility and active biological processes. Here we show that efficient sites of replication initiation drive and modulate specific mutational processes in cancer. Sites of replication initiation impede nucleotide excision repair in melanoma and are off-targets for activation-induced deaminase (AICDA) activity in lymphomas.

View Article and Find Full Text PDF

Molecular imaging using positron emission tomography (PET) provides sensitive detection and mapping of molecular targets. While cancer-associated fibroblasts and integrins have been proposed as targets for imaging of pancreatic ductal adenocarcinoma (PDAC), herein, spatial transcriptomics and proteomics of human surgical samples are applied to select PDAC targets. We find that selected cancer cell surface markers are spatially correlated and provide specific cancer localization, whereas the spatial correlation between cancer markers and immune-related or fibroblast markers is low.

View Article and Find Full Text PDF

Here we report results of a phase 1 multi-institutional, open-label, dose-escalation trial (NCT02744287) of BPX-601, an investigational autologous PSCA-directed GoCAR-T® cell product containing an inducible MyD88/CD40 ON-switch responsive to the activating dimerizer rimiducid, in patients with metastatic pancreatic (mPDAC) or castration-resistant prostate cancer (mCRPC). Primary objectives were to evaluate safety and tolerability and determine the recommended phase 2 dose/schedule (RP2D). Secondary objectives included the assessment of efficacy and characterization of the pharmacokinetics of rimiducid.

View Article and Find Full Text PDF

Owing to their attractive antitumor effects, aminated fullerene derivatives are emerging as promising therapeutic drugs for cancer. However, their in vivo applications are severely limited due to cation toxicity. To address this problem, human heavy chain ferritin (HFn), possessing natural biocompatibility is utilized, to develop a novel supramolecular assembly drug delivery system.

View Article and Find Full Text PDF

Aldo-keto reductase family 1 member B10 (AKR1B10) is a member of the AKR1B subfamily. It is mainly found in cytoplasm, and it is typically expressed in the stomach and intestines. Given that its expression is low or absent in other tissues, AKR1B10 is a potential diagnostic and therapeutic biomarker for various digestive system diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!