Polyprenyl phosphates, as well as polyprenyl alcohols bearing different isopentenyl C(5) units, have been synthesized. The pH range of spontaneous vesicle formation of polyprenyl phosphates with or without polyprenyl alcohols was defined by fluorescence microscopy. A variety of the acyclic or monocyclic polyprenyl phosphates studied formed stable vesicles in water over a wide range of pHs, and the addition of polyprenyl alcohols allowed the vesicle formation of polyprenyl phosphates at higher pHs. Osmotic swelling of a suspension of unilamellar vesicles using the stopped-flow/light-scattering method enabled us to evaluate the water permeability of polyprenyl phosphate vesicles with or without 10 mol% of free polyprenyl alcohol. The addition of many polyprenyl alcohols to polyprenyl phosphate vesicles decreased the water permeability, and some reduced it even more efficiently than cholesterol.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chembiol.2006.11.017 | DOI Listing |
Tuberculosis (TB), exceeded in mortality only by COVID-19 among global infectious diseases, is caused by Mycobacterium tuberculosis (Mtb). The pathogenicity of Mtb is largely attributed to its complex cell envelope, which includes a class of glycolipids called phosphatidyl-myo-inositol mannosides (PIMs), found uniquely in mycobacteria and its related corynebacterineae. These glycolipids maintain the integrity of the mycobacterial cell envelope, regulate its permeability, and mediate host-pathogen interactions.
View Article and Find Full Text PDFACS Infect Dis
May 2024
Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, New York 10065, United States.
Cilagicin is a dual polyprenyl phosphate binding lipodepsipeptide antibiotic with strong activity against clinically relevant Gram-positive pathogens while evading antibiotic resistance. Cilagicin showed high serum binding that reduced its in vivo efficacy. Cilagicin-BP, which contains a biphenyl moiety in place of the N-terminal myristic acid found on cilagicin, showed reduced serum binding and increased in vivo efficacy but decreased potency against some pathogens.
View Article and Find Full Text PDFMolecules
December 2023
Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA.
Dolichols are isoprenoid end-products of the mevalonate and 2-methyl-D-erythritol-4-phosphate pathways. The synthesis of dolichols is initiated with the addition of several molecules of isopentenyl diphosphate to farnesyl diphosphate. This reaction is catalyzed by a -prenyltransferase and leads to the formation of polyprenyl diphosphate.
View Article and Find Full Text PDFBiosci Biotechnol Biochem
March 2024
Department of Biomolecular Science, Faculty of Science, Toho University, Funabashi, Chiba, Japan.
Dephosphorylation of undecaprenyl diphosphate is a crucial step in the synthesis of undecaprenyl phosphate, which is essential for cell wall synthesis. We have developed a method for the quantification of intracellular polyprenyl diphosphates, which have never before been measured directly. Polyprenyl phosphates and diphosphates prepared by chemical phosphorylation of polyprenols from Staphylococcus aureus were used to establish the conditions for fractionation by ion-exchange chromatography and high-performance liquid chromatography (HPLC).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!