We have developed a phage-display method for high-throughput mining of bacterial gene clusters encoding the natural-product biosynthetic enzymes, polyketide synthases (PKSs) and nonribosomal peptide synthetases (NRPSs). This method uses the phosphopantetheinyl transferase activity of Sfp to specifically biotinylate NRPS and PKS carrier-protein domains expressed from a library of random genome fragments fused to a gene encoding a phage coat protein. Subsequently, the biotinylated phages are enriched through selection on streptavidin-coated plates. Using this method, we isolated phage clones from the multiple NRPS and PKS gene clusters encoded in the genomes of Bacillus subtilis and Myxococcus xanthus. Due to the rapid and unambiguous identification of carrier domains, this method will provide an efficient tool for high-throughput cloning of NRPS and PKS gene clusters from many individual bacterial genomes and multigenome environmental DNA.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chembiol.2007.01.006DOI Listing

Publication Analysis

Top Keywords

gene clusters
16
nrps pks
12
high-throughput mining
8
natural-product biosynthetic
8
pks gene
8
gene
5
genome-wide high-throughput
4
mining natural-product
4
biosynthetic gene
4
clusters
4

Similar Publications

Objective: This study aimed to evaluate the occurrence of methicillin-resistant Staphylococcus aureus (MRSA) at the University Hospital Olomouc (UHO) over a 10-year period (2013-2022).

Material And Methods: Data was obtained from the ENVIS LIMS laboratory information system (DS Soft, Czech Republic, Olomouc) of the Department of Microbiology, UHO, for the period 1/1/2013-31/12/2022. Standard microbiological procedures using the MALDI-TOF MS system (Biotyper Microflex, Bruker Daltonics) were applied for the identification.

View Article and Find Full Text PDF

Introduction: Gastric cancer (GC) is among the deadliest malignancies globally, characterized by hypoxia-driven pathways that promote cancer progression, including stemness mechanisms facilitating invasion and metastasis. This study aimed to develop a prognostic decision tree using genes implicated in hypoxia and stemness pathways to predict outcomes in GC patients.

Materials And Methods: GC RNA-seq data from The Cancer Genome Atlas (TCGA) were analyzed to compute hypoxia and stemness scores using Gene Set Variation Analysis (GSVA) and the mRNA expression-based stemness index (mRNAsi).

View Article and Find Full Text PDF

In this study, Allium sativum, garlic, was selected to isolate endophytic bacteria and to evaluate the antimicrobial, antiviral, antioxidant, and cytotoxic activities of their produced metabolites followed by identification of the biosynthetic gene cluster of the antimicrobial metabolites using Oxford Nanopore Technology (ONT). Two bacterial isolates, C6 and C11, were found to have a broad-spectrum antagonistic effect against four standard microbial strains and were molecularly identified using 16 S ribosomal RNA sequence analysis and deposited in a local culture collection as B. velezensis CCASU-C6, and B.

View Article and Find Full Text PDF

This review outlines research on chemical biology using mainly microbial metabolites for agricultural applications. We established the RIKEN Natural Products Depository (NPDepo), housing many microbial metabolites, to support academic researchers who focus on drug discovery. We studied methods to stimulate secondary metabolism in microorganisms to collect various microbial products.

View Article and Find Full Text PDF

One of the underlying mechanisms of epilepsy (EP), a brain disease characterized by recurrent seizures, is considered to be cell death. Disulfidptosis, a proposed novel cell death mechanism, is thought to play a part in the pathogenesis of epilepsy, but the exact role is unclear. The gene expression omnibus series (GSE) 33,000 and GSE63808 datasets were used to search for differentially expressed disulfidptosis-related molecules (DE-DRMs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!