A single residue in leucyl-tRNA synthetase affecting amino acid specificity and tRNA aminoacylation.

Biochemistry

Eugene F. Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, USA.

Published: April 2007

Human mitochondrial leucyl-tRNA synthetase (hs mt LeuRS) achieves high aminoacylation fidelity without a functional editing active site, representing a rare example of a class I aminoacyl-tRNA synthetase (aaRS) that does not proofread its products. Previous studies demonstrated that the enzyme achieves high selectivity by using a more specific synthetic active site that is not prone to errors under physiological conditions. Interestingly, the synthetic active site of hs mt LeuRS displays a high degree of homology with prokaryotic, lower eukaryotic, and other mitochondrial LeuRSs that are less specific. However, there is one residue that differs between hs mt and Escherichia coli LeuRSs located on a flexible closing loop near the signature KMSKS motif. Here we describe studies indicating that this particular residue (K600 in hs mt LeuRS and L570 in E. coli LeuRS) strongly impacts aminoacylation in two ways: it affects both amino acid discrimination and transfer RNA (tRNA) binding. While this residue may not be in direct contact with the amino acid or tRNA substrate, substitutions of this position in both enzymes lead to altered catalytic efficiency and perturbations to the discrimination of leucine and isoleucine. In addition, tRNA recognition and aminoacylation is affected. These findings indicate that the conformation of the synthetic active site, modulated by this residue, may be coupled to specificity and provide new insights into the origins of selectivity without editing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2518062PMC
http://dx.doi.org/10.1021/bi0618215DOI Listing

Publication Analysis

Top Keywords

active site
16
amino acid
12
synthetic active
12
leucyl-trna synthetase
8
achieves high
8
single residue
4
residue leucyl-trna
4
synthetase amino
4
acid specificity
4
trna
4

Similar Publications

Poor efficacy of the combination of clarithromycin, amikacin, and cefoxitin against Mycobacterium abscessus in the hollow fiber infection model.

Ann Clin Microbiol Antimicrob

January 2025

Laboratoire des Mycobactéries, Institut des Agents Infectieux, Laboratoire de Biologie Médicale Multi-Site, Hôpital de la Croix Rousse, Hospices Civils de Lyon, Lyon, France.

Background: Mycobacterium abscessus (MABS) causes difficult-to-treat pulmonary and extra-pulmonary infections. A combination therapy comprising amikacin, cefoxitin, and a macrolide agent is recommended, but its antimicrobial activity and clinical efficacy is uncertain. Inducible resistance to macrolides (macrolides-iR) has been associated with poor clinical response in pulmonary infections, whilst for extra-pulmonary infections data are scarce.

View Article and Find Full Text PDF

This paper describes the design, development, synthesis, in silico, and in vitro evaluation of fourteen novel heterocycle hybrids as inhibitors of the α-glucosidase enzyme. The primary aim of this study was to explore the potential of novel pyrazole-phthalazine hybrids as selective inhibitors of α-glucosidase, an enzyme involved in carbohydrate metabolism, which plays a key role in the management of type 2 diabetes. The rationale for this study stems from the need for new, more effective inhibitors of α-glucosidase with improved efficacy and safety profiles compared to currently available therapies like Acarbose.

View Article and Find Full Text PDF

[FeFe]-hydrogenases are enzymes that catalyze the redox interconversion of H and H using a six-iron active site, known as the H-cluster, which consists of a structurally unique [2Fe] subcluster linked to a [4Fe-4S] subcluster. A set of enzymes, HydG, HydE, and HydF, are responsible for the biosynthesis of the [2Fe] subcluster. Among them, it is well established that HydG cleaves tyrosine into CO and CN and forms a mononuclear [Fe(II)(Cys)(CO)(CN)] complex.

View Article and Find Full Text PDF

This study presents the design, synthesis, and evaluation of a novel series of coumarin-based compounds (9a-t) as potential anticancer agents. The compounds were strategically designed to inhibit cancer-related carbonic anhydrase (CA) isoforms IX and XII and tubulin polymerization. Two approaches were employed for CA inhibition: utilizing the coumarin motif to occlude the CA active site entrance and incorporating zinc-binding groups (sulfonamide, carboxylic acid, and thiol) to interact with the catalytic zinc ion.

View Article and Find Full Text PDF

Proteoglycan-degrading enzymes engineered for enhanced tumor microenvironment interaction in renal cell carcinoma.

Int J Biol Macromol

January 2025

Second Department of Cardiovascular Medicine, Shengjing Hospital Affiliated to China Medical University, No. 36, Sanhao Street, Heping District, Shenyang 110004, Liaoning Province, China. Electronic address:

This work optimized proteoglycan-degrading enzymes through targeted mutagenesis to enhance their interaction with the tumor microenvironment in Renal Cell Carcinoma (RCC). A comprehensive mutagenesis approach identified 60 key mutations significantly improving enzymatic activity, stability, and structural integrity. When compared to Wild Type (WT) enzyme, a remarkable increase in specific activity by 35 % (p < 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!