A CE-MS method for metabolic profiling of amino acids was developed and used in an integrated functional genomics project to study the response of Medicago truncatula liquid suspension cell cultures to stress. This project required the analysis of more than 500 root cell culture extracts. The CE-MS method profiled 20 biologically important amino acids. The CE-MS method required no sample derivatization prior to injection and used minimal sample preparation. The method is described in terms of CE and MS operational parameters, reproducibility of migration times and response ratios, sample preparation, sample throughput, and reliability. This method was then compared with a previously published report that used GC-MS metabolic profiling for the same tissues. The data reveal a high level of similarity between the CE-MS and GC-MS amino acid profiling methods, thus supporting these as complementary technologies for metabolomics. We conclude that CE-MS is a valid alternative to GC-MS for targeted profiling of metabolites, such as amino acids, and possesses some significant advantages over GC-MS.

Download full-text PDF

Source
http://dx.doi.org/10.1002/elps.200600609DOI Listing

Publication Analysis

Top Keywords

ce-ms method
12
amino acids
12
amino acid
8
acid profiling
8
cell cultures
8
ce-ms gc-ms
8
metabolic profiling
8
sample preparation
8
ce-ms
6
amino
5

Similar Publications

Capillary Electrophoresis-Mass Spectrometry for Top-Down Proteomics.

Annu Rev Anal Chem (Palo Alto Calif)

January 2025

Department of Chemistry, Michigan State University, East Lansing, Michigan, USA; email:

Mass spectrometry (MS)-based top-down proteomics (TDP) characterizes proteoforms in cells, tissues, and biological fluids (e.g., human plasma) to better our understanding of protein function and to discover new protein biomarkers for disease diagnosis and therapeutic development.

View Article and Find Full Text PDF

Advancements in food technology have increased the need for thorough analysis to ensure food safety, quality, and compliance with regulatory requirements. Capillary electrophoresis-mass spectrometry (CE-MS) has emerged as a powerful tool in food analysis due to its high separation efficiency, low sample consumption, and ability to handle complex matrices. However, challenges such as the use of volatile running buffers and maintaining the stability of the electrical circuit connecting the CE and MS systems have been addressed through advancements in interface designs, such as sheathless systems and optimized sheath-liquid compositions.

View Article and Find Full Text PDF

Treatment of severely injured patients represents a major challenge, in part due to the unpredictable risk of major adverse events, including death. Preemptive personalized treatment aimed at preventing these events is a crucial objective of patient management; however, the currently available scoring systems provide only moderate guidance. Biomarkers from proteomics/peptidomics studies hold promise for improving the current situation, ultimately enabling precision medicine based on individual molecular profiles.

View Article and Find Full Text PDF

In this work, we present the synthesis and application of fluorescent rhodamine B hydrazide for the derivatization of simple oligosaccharides and complex glycans using a hydrazone formation chemistry approach. The labeling conditions and the experimental setup of CE/LIF were optimized by analyzing oligosaccharide standards. The CE/LIF separations were performed in polybrene-coated capillaries eliminating the need for the purification step after derivatization.

View Article and Find Full Text PDF

Mass spectrometry (MS)-based metabolomics often rely on separation techniques when analyzing complex biological specimens to improve method resolution, metabolome coverage, quantitative performance, and/or unknown identification. However, low sample throughput and complicated data preprocessing procedures remain major barriers to affordable metabolomic studies that are scalable to large populations. Herein, we introduce PeakMeister as a new software tool in the R statistical environment to enable standardized processing of serum metabolomic data acquired by multisegment injection-capillary electrophoresis-mass spectrometry (MSI-CE-MS), a high-throughput separation platform (<4 min/sample) which takes advantage of a serial injection format of 13 samples within a single analytical run.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!