A library of stereo- and regiochemically diverse aminoglycoside derivatives was screened at 1 microM using surface plasmon resonance (SPR) against RNA hairpin models of the bacterial A-site, and the HIV viral TAR and RRE sequences. In order to double the stereochemical diversity of the library, the compounds were screened against both enantiomers of each of these sequences. Remarkably, this initial screen suggested that the same four aminoglycoside derivatives bound most tightly to all three of the RNAs, suggesting that these compounds were good RNA binders which, nonetheless, discriminated poorly between the RNA sequences. The interactions between selected isomeric aminoglycoside derivatives and the RNA hairpins were then studied in more detail using an SPR assay. Three isomeric tight-binding aminoglycoside derivatives, which had been identified from the initial screen, were found to bind more tightly to the RNA hairpins (with K(D) values in the range 0.23 to 4.7 microM) than a fourth isomeric derivative (which had K(D) values in the range 6.0 to 30 microM). The magnitude of the tightest RNA-aminoglycoside interactions stemmed, in large part, from remarkably slow dissociation of the aminoglycosides from the RNA targets. The three tight-binding aminoglycoside derivatives were found, however, to discriminate rather poorly between alternative RNA sequences with, at best, around a twenty-fold difference in affinity for alternative RNA hairpin sequences. Within the aminoglycoside derivative library studied, high affinity for an RNA target was not accompanied by good discrimination between alternative RNA sequences.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7612281PMC
http://dx.doi.org/10.1039/b618683aDOI Listing

Publication Analysis

Top Keywords

aminoglycoside derivatives
24
rna hairpin
12
rna sequences
12
alternative rna
12
rna
11
library stereo-
8
stereo- regiochemically
8
regiochemically diverse
8
diverse aminoglycoside
8
hairpin sequences
8

Similar Publications

Progress in antileishmanial drugs: Mechanisms, challenges, and prospects.

PLoS Negl Trop Dis

January 2025

Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China.

Leishmaniasis, a neglected tropical disease caused by Leishmania parasites, continues to pose global health challenges. Current treatments face issues like resistance, safety, efficacy, and cost. This review covers the discovery, mechanisms of action, clinical applications, and limitations of key antileishmanial agents: pentavalent antimonials, amphotericin B, miltefosine, paromomycin, and pentamidine.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

National Council of Scientific and Technical Research (CONICET/UNLP), La Plata, Argentina.

Background: Sporadic Alzheimer's disease (sAD) is the most common form of dementia, characterized by a progressive decline in cognitive function and, cortical and hippocampal atrophy. Our objective is to develop neuroprotective therapies that promote the homeostatic and modulatory properties of astrocytes, and enhance their protective functions. Glial-derived neurotrophic factor (GDNF) has emerged as a promising factor for its ability to promote neuronal survival and function.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Central University of Punjab, Bathinda, Punjab, India.

Background: Neuroinflammation has gained substantial attention for its involvement in the progression of Alzheimer's disease (AD).

Method: Recently, it was discovered that platelets, which make up 90% of the circulatory Aβ, encourage the development of AD. Therefore, we hypothesized to use a novel coumarin derivative PS21HKR, which is believed to possess anti-platelet and anti-inflammatory properties for the treatment of AD.

View Article and Find Full Text PDF

A microfluidics platform for simultaneous evaluation of sensitivity and side effects of anti-cancer drugs using a three-dimensional culture method.

Sci Rep

January 2025

Laboratory of Veterinary Pharmacology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu , Tokyo, 183-8509, Japan.

Organoids are stem cell-derived three-dimensional tissue cultures composed of multiple cell types that recapitulate the morphology and functions of their in vivo counterparts. Organ-on-a-chip devices are tiny chips with interconnected wells and channels designed using a perfusion system and microfluidics to precisely mimic the in vivo physiology and mechanical forces experienced by cells in the body. These techniques have recently been used to reproduce the structure and function of organs in vitro and are expected to be promising alternatives for animal experiments in the future.

View Article and Find Full Text PDF

Bacterial resistance, a global public health concern prioritized by the World Health Organization, is particularly alarming in Staphylococcus aureus and Escherichia coli. Urgently addressing this, the search for new antibiotics has turned to plant essential oils. Our study focused essential oils derived from Colombian plants Croton killipianus, Croton smithianus, Croton leptostachyus, Croton hondensis, and Croton gossypiifolius.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!