A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Computer simulation of corticospinal activity during Transcranial Electrical Stimulation in neurosurgery. | LitMetric

Computer simulation of corticospinal activity during Transcranial Electrical Stimulation in neurosurgery.

Stud Health Technol Inform

Laboratory for Computational Neuroscience, Dept. of Neurosurgery, University of Pittsburgh, Pittsburgh, PA 15261, USA.

Published: May 2007

Transcranial Electrical Stimulation (TES) is an important procedure in intraoperative motor monitoring. When neurosurgery is performed at certain difficult locations within the central nervous system (CNS), TES evaluates CNS functions during surgical manipulations to prevent post-operative complications. In TES, electrical stimulation is provided to the motor cortex through electrodes placed on the scalp, generating action potentials which travel through the nervous system. Despite widespread use, the sites of activation (AP generation) within the brain are not well understood. We have integrated computational and neurophysiologic models including a 3D volume conduction head model computed using the finite element method, a realistic corticospinal tract (CST) model, and a geometry-specific axon activation model for the CST to predict the sites of activation along the CST as a function of electrode placement and stimulation voltage, which have been verified by epidural recordings. We then develop a simple meshing and rendering algorithm to display the activating function along the CST. We have found that the AP generation appears closely linked to regions of high CST curvature. Our model and rendering algorithm provide a window to visualize the effects of TES in the brain.

Download full-text PDF

Source

Publication Analysis

Top Keywords

electrical stimulation
12
transcranial electrical
8
nervous system
8
sites activation
8
rendering algorithm
8
cst
5
computer simulation
4
simulation corticospinal
4
corticospinal activity
4
activity transcranial
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!