NDST-1 modulates BMPR and PTHrP signaling during endochondral bone formation in a gene knockout model.

Bone

State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China.

Published: June 2007

GlcNAc N-deacetylase/N-sulfotransferase-1 (NDST-1), a member of the enzyme family catalyzing the first modification step in the biosynthesis of heparan sulfate (HS), was knocked out in mice to investigate its role in embryonic development. NDST-1 null mice exhibited delayed endochondral bone formation including shortened calcified zones in limbs, delayed chondrocyte and osteogenetic differentiation, and increased chondrocyte proliferation. In situ HS binding assay revealed that the binding ability of bone morphogenetic protein (BMP) -2, -4, and -6 to endogenous HS was decreased in mutant phalanges, while that of fibroblast growth factor-1 (FGF-1) was not affected. Up-regulation of BMPR-IA, Phospho-Smad1 (P-Smad1) and parathyroid-hormone related protein (PTHrP), but not the Indian hedgehog, Gli1, Gli3, Patched, and FGFR-3, was observed. Furthermore, block of BMPR signaling with noggin rescued the delayed chondrocyte hypertrophic differentiation in NDST-1 (-/-) mice and recovered the expression of both P-Smad1 and PTHrP proteins. These results suggested that NDST-1-dependent heparan sulfate might negatively modulate BMP and its downstream PTHrP signaling, and thus affect endochondral bone development.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bone.2007.01.021DOI Listing

Publication Analysis

Top Keywords

endochondral bone
12
pthrp signaling
8
bone formation
8
heparan sulfate
8
delayed chondrocyte
8
ndst-1
4
ndst-1 modulates
4
modulates bmpr
4
pthrp
4
bmpr pthrp
4

Similar Publications

A review of ectochondral bone and the role of membranes in shaping endochondral bones of the skull.

Anat Rec (Hoboken)

January 2025

Department of Health and Rehabilitation Sciences, Slippery Rock University, Slippery Rock, Pennsylvania, USA.

Bones of the skull are traditionally categorized as derived from either endochondral or intramembranous bone. In our previous work, we have observed the interaction of different tissue types in growth of the skull. We find the dichotomy of intramembranous and endochondral bone to be too restrictive, limiting our interpretation of sources of biological variation.

View Article and Find Full Text PDF

The surface topography and chemistry of titanium-aluminum-vanadium (Ti6Al4V) implants play critical roles in the osteoblast differentiation of human bone marrow stromal cells (MSCs) and the creation of an osteogenic microenvironment. To assess the effects of a microscale/nanoscale (MN) topography, this study compared the effects of MN-modified, anodized, and smooth Ti6Al4V surfaces on MSC response, and for the first time, directly contrasted MN-induced osteoblast differentiation with culture on tissue culture polystyrene (TCPS) in osteogenic medium (OM). Surface characterization revealed distinct differences in microroughness, composition, and topography among the Ti6Al4V substrates.

View Article and Find Full Text PDF

regional gene therapy is a promising tissue-engineering strategy for bone regeneration: osteogenic mesenchymal stem cells (MSCs) can be genetically modified to express an osteoinductive stimulus (e.g., bone morphogenetic protein-2), seeded onto an osteoconductive scaffold, and then implanted into a bone defect to exert a therapeutic effect.

View Article and Find Full Text PDF

FGFR antagonists restore defective mandibular bone repair in a mouse model of osteochondrodysplasia.

Bone Res

January 2025

Université de Paris Cité, Imagine Institute, Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, INSERM UMR 1163, Paris, France.

Gain-of-function mutations in fibroblast growth factor receptor (FGFR) genes lead to chondrodysplasia and craniosynostoses. FGFR signaling has a key role in the formation and repair of the craniofacial skeleton. Here, we analyzed the impact of Fgfr2- and Fgfr3-activating mutations on mandibular bone formation and endochondral bone repair after non-stabilized mandibular fractures in mouse models of Crouzon syndrome (Crz) and hypochondroplasia (Hch).

View Article and Find Full Text PDF

Estrogen Deficiency alters Vascularization and Mineralization dynamics: insight from a novel 3D Humanized and Vascularized Bone Organoid Model.

Am J Physiol Cell Physiol

January 2025

Mechanobiology and Medical Device Research Group (MMDRG), Biomedical Engineering, College of Science and Engineering, University of Galway, Ireland.

Osteoporosis is not merely a disease of bone loss but also involves changes in the mineral composition of the bone that remains. studies have investigated these changes and revealed that estrogen deficiency alters osteoblast mineral deposition, osteocyte mechanosensitivity and osteocyte regulation of osteoclastogenesis. During healthy bone development, vascular cells stimulate bone mineralization via endochondral ossification, but estrogen deficiency impairs vascularization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!