Sonic Hedgehog (Shh) signaling by the polarizing region, at the posterior of the vertebrate limb bud, is pivotal in determining digit number and identity. Shh establishes a gradient of the bifunctional transcriptional effector, Gli3, with high levels of full-length activator (Gli3A) in the posterior bud, where digits form, and high levels of shorter repressor (Gli3R) in the anterior. Repressor formation depends on protein kinase A (PKA), but in Drosophila, PKA also plays a role in activator function. Increasing PKA levels in chick limb development using Forskolin had no effect on posterior polarizing activity but weak polarizing activity, based on ligand-independent Shh signaling, was induced in anterior limb bud cells resulting in extra digits. Manipulating PKA activity levels directly with a retrovirus expressing activated PKA induced extra digits similar to those induced by Forskolin treatment suggesting that PKA may have a previously unrecognized positive role in Shh signaling in vertebrate limbs. Expressing dominant negative PKA also induced extra, sometimes multiple digits, from anterior limb bud demonstrating the negative role in Shh signaling. PKA levels in the limb bud are high posteriorly and low anteriorly, suggesting that PKA activity may influence the outcome of Shh signaling in normal development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ydbio.2007.02.017 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!