Aim: To develop a novel, in situ gel system for nasal delivery of scopolamine hydrobromide (SCOP) and study its efficacy on motion sickness.
Methods: SCOP in situ gels at 0.2%, 0.5%, and 1.0% gellan gum concentration (w/v) were prepared, respectively, and characterized in terms of viscosity, in vitro release, and nasal ciliotoxicity. Single photon emission computing tomography technique was used to evaluate the nasal residence time of gel containing (99m)Tc tracer. The antimotion sickness efficacy produced by the in situ gel formulation was investigated in rats and compared with those achieved after subcutaneous and oral administration.
Results: The viscosity of the gellan gum formulations either in solution or in gel increased with increasing concentrations of gellan gum. Its release in vitro was moderate in artificial nasal fluid. The micrographic results showed that in situ gels were safe, without nasal ciliotoxicity. In comparison with phosphate buffer saline, a prolonged radioactivity of (99m)Tc in the rabbit nasal cavity was observed after administration of the gellan gum formulation. Intranasal SCOP in situ gel at a dose of 100 microg/kg decreased symptoms of motion sickness significantly in comparison with subcutaneous and oral administration (P<0.01).
Conclusion: SCOP nasal in situ gel is a safe and promising therapeutic alternative to existing medications for motion sickness.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1745-7254.2007.00540.x | DOI Listing |
Mater Horiz
January 2025
Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology (SeoulTech), Seoul 01811, Republic of Korea.
Aqueous two-phase systems (ATPSs) have primarily been developed in the form of emulsions to enhance their utilization in green and biocompatible applications. However, numerous challenges have arisen in forming stable and processable water-in-water (W/W) emulsion systems, as well as in fine-tuning the interconnectivity of their internal structure, which can significantly impact their performance. To effectively address these challenges, we elucidate, for the first time, the root cause of the poor stability of W/W emulsions.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, China.
Polymer electrolytes incorporated with fillers possess immense potential for constructing the fast and selective Li conduction. However, the inhomogeneous distribution of the fillers usually deteriorates the microdomain consistency of the electrolytes, resulting in uneven Li flux, and unstable electrode-electrolyte interfaces. Herein, we formulate a solution-process chemistry to in situ construct gel polymer electrolytes (GPEs) with well-dispersed metal-organic frameworks (MOFs), leading to a uniform microdomain structure.
View Article and Find Full Text PDFAdv Mater
January 2025
School of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory of Special Functional Aggregated Materials, Shandong Key Laboratory of Advanced Organosilicon Materials and Technologies, Shandong University, Jinan, 250100, China.
SnO₂ is a widely used electron transport layer (ETL) material in perovskite solar cells (PSCs), and its design and optimization are essential for achieving efficient and stable PSCs. In this study, the in situ formation of a chain entanglement gel polymer electrolyte is reported in an aqueous phase, integrated with SnO₂ as the ETL. Based on the self-polymerization of 3-[[2-(methacryloyloxy)ethyl]dimethylammonium]propane-1-sulfonic acid (DAES) in an aqueous environment, combining the catalytic effect of LiCl (as a Lewis acid) with the salting-out effect, and the introduction of polyvinylpyrrolidone (PVP) as the other polymer chain, a chain entanglement gelled SnO (G-SnO) structure is successfully constructed with a wide range of functions.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, PR China. Electronic address:
The poor mechanics and functionality of natural-polymer hydrogels from gellan gum (GG) prohibit their practical application, despite the intrinsic thermo-reversible gelation nature, structural and quality consistency, biocompatibility, biodegradability and sustainability of microbial fermentation-produced GG. Herein, a dual-reinforcing strategy, i.e.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan; International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan. Electronic address:
Severe traumatic bleeding and chronic diabetic wounds require rapid hemostasis and multifunctional dressings, which remain particularly challenging, especially for non-compressible trauma and irregular wounds with dysregulated microenvironments. Chitosan (CS) can be easily cross-linked with genipin to form GpCS hydrogels. However, developing injectable GpCS hydrogels for biomedical applications faces challenges, particularly in enhancing rapid gel formation and optimizing physical properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!