Reactions of adenine with water-soluble oxalato complexes at acidic pH give the compounds (1H,9H-ade)2[Cu(ox)2(H2O)] (1) [H2ade=adeninium cation (1+), ox=oxalato ligand (2-)] and (3H,7H-ade)2[M(ox)2(H2O)2].2H2O [M(II)=Co (2), Zn (3)]. The X-ray single crystal analyses show that the supramolecular architecture of all compounds is built up of anionic sheets of metal-oxalato-water complexes and ribbons of cationic nucleobases among them to afford lamellar inorganic-organic hybrid materials. The molecular recognition process between the organic and the inorganic frameworks determines the isolated tautomeric form of the adeninium cation found in the crystal structures: the canonical 1H,9H for compound 1, and the first solid-state characterized 3H,7H-adeninium tautomer for compounds 2 and 3. Density functional theory calculations have been performed to study the stability of the protonated nucleobase forms and their hydrogen-bonded associations by comparing experimental and theoretical results.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ic062448s | DOI Listing |
EMBO J
January 2025
Department of Oncology, The University of Oxford, Oxford, OX3 7DQ, UK.
Hypoxia is a common feature of solid tumors that has previously been linked to resistance to radiotherapy and chemotherapy, and more recently to immunotherapy. In particular, hypoxic tumors exclude T cells and inhibit their activity, suggesting that tumor cells acquire a mechanism to evade T-cell recognition and killing. Our analysis of hypoxic tumors indicates that hypoxia downregulates the expression of MHC class I and its bound peptides (i.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Bio and Brain Engineering, KAIST, Daejeon, 34141, Republic of Korea.
Autism spectrum disorder (ASD) affects up to 1 in 59 children, and is one of the most common neurodevelopmental disorders. Recent genomic studies have highlighted the role of rare variants in ASD. This study aimed to identify genes affected by rare variants shared by siblings with ASD and validate the function of a candidate gene FRRS1L.
View Article and Find Full Text PDFCell
December 2024
Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143, USA; Chan Zuckerberg Biohub, San Francisco, CA 94148, USA; Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA 94115, USA. Electronic address:
Three proton-sensing G protein-coupled receptors (GPCRs)-GPR4, GPR65, and GPR68-respond to extracellular pH to regulate diverse physiology. How protons activate these receptors is poorly understood. We determined cryogenic-electron microscopy (cryo-EM) structures of each receptor to understand the spatial arrangement of proton-sensing residues.
View Article and Find Full Text PDFComput Biol Chem
December 2024
Faculty of Biochemistry and Molecular Medicine, University of Oulu, PO Box 5400, Oulu 90014, Finland; Biocenter Oulu, University of Oulu, PO Box 5400, Oulu 90014, Finland. Electronic address:
Single-stranded breaks (SSBs) are the most frequent DNA lesions threatening genomic integrity-understanding how DNA sensor proteins recognize certain SSB types is crucial for studies of the DNA repair pathways. During repair of damaged DNA the final SSB that is to be ligated contains a 5'-phosphorylated end. The present work employed molecular simulation (MD) of DNA with a phosphorylated break in solution to address multiple questions regarding the dynamics of the break site.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX 75080.
The TRAMP complex contains two enzymatic activities essential for RNA processing upstream of the nuclear exosome. Within TRAMP, RNA is 3' polyadenylated by a subcomplex of Trf4/5 and Air1/2 and unwound 3' to 5' by Mtr4, a DExH helicase. The molecular mechanisms of TRAMP assembly and RNA shuffling between the two TRAMP catalytic sites are poorly understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!