Exogenous nucleotides are considered semiessential nutritional components that play an important role in intestinal development, maintenance, and recovery from tissue damage. Nucleosides (NS) are the best-absorbed chemical form of nucleotides in the intestinal epithelium. The aim of this work was to clarify, at the cellular level, the effects described in vivo. Under conditions of high intracellular availability of NS, we studied the effects of 2 NS mixtures on the NS uptake and intracellular distribution and on the proliferation, morphology, viability, and cell-cycle phase distribution of rat intestinal epithelial cell line 6. Purine and pyrimidine NS showed a similar uptake profile, but the intracellular incorporation of guanosine was greater than that of uridine, without differences in intracellular distribution. Proliferation assays demonstrated that IEC-6 cell proliferation is increased by a mixture containing thymidine but decreased by one containing uridine. In fact, the antiproliferative effect started at 75 micromol/L, which indicated that it may not be correct to consider concentrations of uridine >75 micromol/L as physiological. Interestingly, these effects were not related to increased cell necrosis or apoptosis or to changed cell morphology but rather to a reduced S-phase and increased G0/G1 phase of the cell cycle. In summary, our results suggest that NS molecules are well-absorbed by rat intestinal epithelial cell line 6 cells, whose proliferation can be promoted or inhibited (according to the NS mixtures used) by a mechanism that is not dependent on the toxicity of the mixtures.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jn/137.4.879DOI Listing

Publication Analysis

Top Keywords

rat intestinal
12
intestinal epithelial
12
intracellular distribution
8
distribution proliferation
8
epithelial cell
8
cell
6
proliferation
5
intestinal
5
exogenous nucleosides
4
nucleosides modulate
4

Similar Publications

Preparation, characterization, stability and replenishing calcium ability of Moringa oleifera leaf peptide-calcium chelates.

Food Res Int

January 2025

College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China; National Research and Development Professional Center for Moringa Processing Technology, Yunnan Agricultural University, Kunming 650201, China; Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China; Yunnan Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China. Electronic address:

Calcium deficiency has garnered significant attention as a global public health issue. A new generation of calcium supplements, peptide-calcium chelates, is expected to increase in market value. In this study, we produced MORP (MW < 1 kDa) from Moringa oleifera leaf protein via enzymatic hydrolysis for chelation with Ca to produce MORP-Ca.

View Article and Find Full Text PDF

Background: Simulated microgravity environment can lead to gastrointestinal motility disturbance. The pathogenesis of gastrointestinal motility disorders is closely related to the stem cell factor (SCF)/c-kit signaling pathway associated with intestinal flora and Cajal stromal cells. Moreover, intestinal flora can also affect the regulation of SCF/c-kit signaling pathway, thus affecting the expression of Cajal stromal cells.

View Article and Find Full Text PDF

Introduction: A complicated scenario where "multiple disease threats coexist and multiple health influencing factors are intertwined" is demonstrated by the fact that dental caries, obesity myopia and scoliosis have emerged as global public health issues. The problem of diseases co-existing in living things can be resolved by using probiotics. , has gained attention recently due to its probiotic properties, useful traits, and potential medical applications.

View Article and Find Full Text PDF

Oral antibiotic treatment is well known to be one of the main factors affecting gut microbiota composition by altering bacterial diversity. It decreases the abundance of butyrate-producing bacteria such as Lachnospiraceae and Ruminococcaceae, while increasing abundance of Enterobacteriaceae. The recovery time of commensal bacteria post-antibiotic treatment varies among individuals, and often, complete recovery is not achieved.

View Article and Find Full Text PDF

Butyrylated modification of corn starch alleviates autism-like behaviors by modulating 5-hydroxytryptamine metabolism and gut-brain neural activity.

Carbohydr Polym

March 2025

State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China; School of Food Science and Technology, Jiangnan University, Wuxi, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, China. Electronic address:

This study was conducted to elucidate the effects of different degrees of substitution (DS) on the properties of propionylated and butyrylated starches and to investigate their efficacy and mechanisms in ameliorating autism-like phenotypes. Fourier transform infrared spectra of propionylated and butyrylated starches revealed the presence of the CO absorption peak at 1730 cm. Additionally, as the DS increased, the surface of the starch granules became rougher, and the crystallinity decreased.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!