Glycoengineering of alphaGal xenoantigen on recombinant peptide bearing the J28 pancreatic oncofetal glycotope.

Glycobiology

INSERM UMR-777, Faculté de Médecine-Timone, 27 Boulevard Jean Moulin, 13385 Marseille Cedex 05, France.

Published: June 2007

In human pancreatic adenocarcinoma, alterations of glycosylation processes leads to the expression of tumor-associated carbohydrate antigens, representing potential targets for cancer immunotherapy. Among these pancreatic tumor-associated carbohydrate antigens, the J28 glycotope located within the O-glycosylated mucin-like C-terminal domain of the fetoacinar pancreatic protein (FAPP) and expressed at the surface of human tumoral tissues, can be a good target for anticancer therapeutic vaccines. However, the oncodevelopmental self character of the J28 glycotope associated with the low immunogenicity of tumor-associated carbohydrate antigens may be a major obstacle to effective anti-tumor vaccine therapy. In this study, we have investigated a method to increase the immunogenicity of the recombinant pancreatic oncofetal J28 glycotope by glycoengineering Galalpha1,3Galss1,4GlcNAc-R (alphaGal epitope) which may be recognized by natural anti-alphaGal antibody present in humans. For this purpose, we have developed a stable Chinese hamster ovary cell clone expressing the alphaGal epitope by transfecting the cDNA encoding the alpha1,3galactosyltransferase. These cells have been previously equipped to produce the recombinant O-glycosylated C-terminal domain of FAPP carrying the J28 glycotope. As a consequence, the C-terminal domain of FAPP produced by these cells carries the alphaGal epitope on oligosaccharide structures associated with the J28 glycotope. Furthermore, we show that this recombinant "alpha1,3galactosyl and J28 glycotope" may not only be targeted by human natural anti-alphaGal antibodies but also by the mAbJ28, suggesting that the J28 glycotope remains accessible to the immune system as vaccinating agent. This approach may be used for many identified tumor-associated carbohydrate antigens which can be glycoengineered to carry a alphaGal epitope to increase their immunogenicity and to develop therapeutic vaccines.

Download full-text PDF

Source
http://dx.doi.org/10.1093/glycob/cwm028DOI Listing

Publication Analysis

Top Keywords

j28 glycotope
24
tumor-associated carbohydrate
16
carbohydrate antigens
16
alphagal epitope
16
c-terminal domain
12
j28
8
pancreatic oncofetal
8
therapeutic vaccines
8
increase immunogenicity
8
natural anti-alphagal
8

Similar Publications

Aberrant glycosylation or overexpression of cell-surface glycosylated tumor-associated Ags (TAA) distinguish neoplastic from normal cells. Interactions of TAA MUC1 and HER2/neu with dendritic cells (DC) preclude efficient processing, which impairs immune responses. It is thus important to define the mechanisms of interactions between DC and glycosylated TAA and their trafficking and processing for further T cell activation.

View Article and Find Full Text PDF

Glycoengineering of alphaGal xenoantigen on recombinant peptide bearing the J28 pancreatic oncofetal glycotope.

Glycobiology

June 2007

INSERM UMR-777, Faculté de Médecine-Timone, 27 Boulevard Jean Moulin, 13385 Marseille Cedex 05, France.

In human pancreatic adenocarcinoma, alterations of glycosylation processes leads to the expression of tumor-associated carbohydrate antigens, representing potential targets for cancer immunotherapy. Among these pancreatic tumor-associated carbohydrate antigens, the J28 glycotope located within the O-glycosylated mucin-like C-terminal domain of the fetoacinar pancreatic protein (FAPP) and expressed at the surface of human tumoral tissues, can be a good target for anticancer therapeutic vaccines. However, the oncodevelopmental self character of the J28 glycotope associated with the low immunogenicity of tumor-associated carbohydrate antigens may be a major obstacle to effective anti-tumor vaccine therapy.

View Article and Find Full Text PDF

The formation of the oncofetal J28 glycotope involves core-2 beta6-N-acetylglucosaminyltransferase and alpha3/4-fucosyltransferase activities.

Glycobiology

September 1999

INSERM U 260, Unité de Recherche de Physiopathologie des Régulations Hormono-Nutritionnelles, Faculté de Médecine-Timone, 27 Boulevard Jean Moulin, 13385 Marseilles-Cedex 5, France.

The feto-acinar pancreatic protein or FAPP, the oncofetal glycoisoform of bile salt-dependent lipase (BSDL), is characterized by the presence of the J28 glycotope recognized by mAbJ28. This fucosylated epitope is carried out by the O-linked glycans of the C-terminal mucin-like region of BSDL. This glycotope is expressed by human tumoral pancreatic tissues and by human pancreatic tumoral cell lines such as SOJ-6 and BxPC-3 cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!