The objective of this study was to identify the products and possible role of a putative pathway for de novo fatty acid synthesis in mammalian mitochondria. Bovine heart mitochondrial matrix preparations were prepared free from contamination by proteins from other subcellular components and, using a combination of radioisotopic labeling and mass spectrometry, were shown to contain all of the enzymes required for the extension of a 2-carbon precursor by malonyl moieties to saturated acyl-ACP thioesters containing up to 14 carbon atoms. A major product was octanoyl-ACP and, in the presence of the apo-H-protein of the glycine cleavage complex, the newly synthesized octanoyl moieties were translocated to the lipoylation site on the acceptor protein. These studies demonstrate that one of the functions of the de novo fatty acid biosynthetic pathway in mammalian mitochondria is to provide the octanoyl precursor required for the essential protein lipoylation pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M701486200DOI Listing

Publication Analysis

Top Keywords

novo fatty
12
fatty acid
12
mammalian mitochondria
12
coupling novo
4
acid biosynthesis
4
biosynthesis lipoylation
4
lipoylation pathways
4
pathways mammalian
4
mitochondria objective
4
objective study
4

Similar Publications

Advancing de novo lipogenesis: Genetic and metabolic insights.

Cell Metab

January 2025

Section of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX, USA. Electronic address:

De novo lipogenesis (DNL) is the process whereby cells synthesize fatty acids from acetyl-CoA, contributing to steatosis in fatty liver disease. Two new studies, using genetic mouse models, metabolomics, and pharmacology, identified alternative pathways in DNL and unexpected physiological effects when targeting key enzymes in this pathway.

View Article and Find Full Text PDF

Consuming food containing ingredients with a documented impact on lipid metabolism can help fight overweight and obesity. The simplest way to reduce the level of fatty acids is to block their synthesis or increase the rate of their degradation. This study aimed to determine the effect of resveratrol, , conjugated linoleic acid (CLA), , CLA, and various variants of their combinations on de novo fatty acid biosynthesis in 3T3-L1 adipocytes.

View Article and Find Full Text PDF

Cystine/cysteine is critical for antioxidant response and sulfur metabolism in cancer cells and is one of the most depleted amino acids in the PDAC microenvironment. The effects of cystine limitation stress (CLS) on PDAC progression are poorly understood. Here we report that adaptation to CLS (CLSA) promotes PDAC cell proliferation and tumor growth through translational upregulation of the oxidative pentose phosphate pathway (OxPPP).

View Article and Find Full Text PDF

Type 2 diabetes mellitus (T2DM), a metabolic disorder, has the hallmarks of persistent hyperglycemia, insulin resistance, and dyslipidemia. Protein-tyrosine phosphatase 1B (PTP1B) was found to be overexpressed in many tissues in the case of T2DM and involved in the negative regulation of insulin signaling. So, PTP1B inhibition can act as a therapeutic target for T2DM.

View Article and Find Full Text PDF

Ethnopharmacological Relevance: Nonalcoholic steatohepatitis (NASH) poses significant health risks; however, effective treatment options remain scarce. Yinchen-Gancao decoction (YG, a formula composed of Traditional Chinese Medicine Artemisia capillaris Thunb. and Glycyrrhiza uralensis Fisch.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!