Background: Pyrazoline derivatives have been found to possess a broad spectrum of biological activities. Among various pyrazoline derivatives, 2-pyrazolines seem to be the most frequently studied. A variety of methods have been reported for the preparation of this class of compound. However, in spite of their potential utility, some of the reported methods suffer from drawbacks such as long reaction times, cumbersome product isolation procedures and environmental concerns. Organic reactions in aqueous media have attracted increasing interest recently because of environmental issues and the understanding of biochemical processes. Ultrasound has increasingly been used in organic synthesis in the last three decades. A large number of organic reactions can be carried out in higher yields, shorter reaction time or milder conditions under ultrasound irradiation.
Results: Preparation of a series of 1,3,5-triaryl-2-pyrazolines through the reaction of chalcones and phenylhydrazine hydrochloride was carried out in 83-96% yield within 1.5-2 h in sodium acetate-acetic acid aqueous solution under ultrasound irradiation.
Conclusion: We have described a practical and convenient procedure for the synthesis of 1,3,5-triaryl-2-pyrazolines in sodium acetate-acetic acid aqueous solution at room temperature under ultrasound irradiation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1847524 | PMC |
http://dx.doi.org/10.1186/1860-5397-3-13 | DOI Listing |
Sci Rep
January 2025
Department of Biological Sciences, Birla Institute of Technology and Sciences, Pilani, 333031, Rajasthan, India.
In present study, 15 morphologically different fungi isolated from rhizopheric soils of an industrial area were screened for their Zn removal efficiency from aqueous solution. Isolate depicting highest potential was molecularly identified as Aspergillus terreus SJP02. Effect of various process parameters viz.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Department of Biology, Hamilton College, Clinton, NY, USA.
Perfluorooctane sulfonic acid (PFOS) is an anthropogenic chemical found in aqueous film-forming foams (AFFFs) and many consumer products. Despite its environmental ubiquity and persistence, little is known about the effects of PFOS on stress levels in wild animals. Here, we examined PFOS bioaccumulation and correlations between PFOS exposure and oxidative stress in snapping turtles (Chelydra serpentina) downstream of Griffiss Air Force Base in Rome, New York, a known source of AFFF contamination.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Chemistry, Faculty of Science, Arak University, Arak, 38481-77584, Iran.
In this study, a novel hybrid nanostructure consisting of acid-decorated chitosan and magnetic AlFeO nanoparticles was fabricated. The acid-decorated chitosan provided a stable and biocompatible matrix for the magnetic AlFeO nanoparticles. Various techniques including Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction patterns (XRD), thermogravimetric analysis (TGA), vibrating sample magnetometry (VSM), specific surface area (BET), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS) were used to characterize and confirm the successful synthesis of the hybrid nanostructure.
View Article and Find Full Text PDFSci Rep
January 2025
National Institute of Oceanography and Fisheries (NIOF), Kayet Bey, Elanfoushy, Alexandria, Egypt.
This study aims to investigate a new approach to removing hazardous dyes like Direct Blue 86 (DB86) and Acid Yellow 36 (AY36) from aqueous environments. Delonix regia biochar-sulphur (DRB-S), made from Delonix regia seed pods (DPSPs), is an inexpensive and environmentally friendly adsorbent. Different characterization investigations using BJH, BET, FTIR, SEM, DSC, TGA, and EDX were utilized in the descriptions of the DRB-S biosorbent.
View Article and Find Full Text PDFPLoS One
January 2025
Institute of Natural Antioxidants and Anti-Inflammation, Dali University, Dali, Yunnan, China.
Oxidative damage, oxidative inflammation, and a range of downstream diseases represent significant threats to human health. The application of natural antioxidants and anti-inflammatory agents can help prevent and mitigate these associated diseases. In this study, we aimed to investigate the effectiveness of walnut green husk (WNGH) as an antioxidant and anti-inflammatory agent in an in vitro setting.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!