A high throughput screening was carried out in order to search for inhibitors of acetylcholinesterase (AChE) from microorganism metabolites. An actinomycete strain was found to produce active compounds named N98-1272 A, B and C with IC50 of 15.0, 11.5, 12.5 microM, respectively. Structural studies revealed that the three compounds are identical to the known antibiotics, Manumycin C, B and A. Kinetic analyses showed that N98-1272 C (Manumycin A) acted as a reversible noncompetitive inhibitor of acetylcholinesterase, with a Ki value of 7.2 microM. The cyclohexenone epoxide part of the structure plays a crucial role in the inhibitory activity against AChE. Compared with Tacrine, N98-1272 A, B, and C exhibit much better selectivity toward AChE over BuChE.

Download full-text PDF

Source
http://dx.doi.org/10.1080/14756360600988781DOI Listing

Publication Analysis

Top Keywords

metabolites actinomycete
8
actinomycete strain
8
isolation characterization
4
n98-1272
4
characterization n98-1272
4
n98-1272 selective
4
selective acetylcholinesterase
4
acetylcholinesterase inhibitors
4
inhibitors metabolites
4
strain high
4

Similar Publications

Background: Actinomycetes, Gram-positive bacteria, are recognized for producing bioactive metabolites. Lonar Soda Lake, an alkaline ecosystem, hosts diverse actinomycetes with possible anticancer activities.

Aim: To assess the cytotoxic potential of fermentation metabolites from actinomycetes isolated from Lonar Soda Lake against HeLa cancer cells employing and methods.

View Article and Find Full Text PDF

Caves are a unique ecosystem that harbor diverse microorganisms, and provide a challenging environment to the dwelling microbial communities, which may boost gene expression and can lead to the production of inimitable bioactive natural products. In this study, we obtained 59 actinobacteria from four different caves located in Bahadurkhel, District Karak, Pakistan. On the basis of taxonomic characteristics, 30 isolates were selected and screened for secondary metabolites production and bioactivity profiling.

View Article and Find Full Text PDF

Background: Alzheimer’s disease (AD) comprise over 70% of dementia cases in the United States (US), characterized by progressive neurodegenerative symptoms. In the US and Puerto Rico (PR), AD is the sixth and fourth leading cause of death, respectively. The Gut‐Brain Axis is a bidirectional communication mechanism between the central nervous system and microbes that reside in the gastrointestinal tract.

View Article and Find Full Text PDF

Dinucleases of the DEDD superfamily, such as oligoribonuclease, Rexo2 and nanoRNase C, catalyze the essential final step of RNA degradation, the conversion of di- to mononucleotides. The active sites of these enzymes are optimized for substrates that are two nucleotides long, and do not discriminate between RNA and DNA. Here, we identified a novel DEDD subfamily, members of which function as dedicated deoxydinucleases (diDNases) that specifically hydrolyze single-stranded DNA dinucleotides in a sequence-independent manner.

View Article and Find Full Text PDF

The Daunomycin: Biosynthesis, Actions, and the Search for New Solutions to Enhance Production.

Microorganisms

December 2024

VUAB Pharma A.S, Nemanicka 2722, 370 01 České Budějovice, Czech Republic.

Daunorubicin (DNR) is an anthracycline antibiotic originating from soil-dwelling actinobacteria extensively used to treat malignant tumors. Over the decades, extensive attempts were made to enhance the production of anthracyclines by introducing genetic modifications and mutations in combination with media optimization, but the target production levels remain comparatively low. Developing an appropriate culture medium to maximize the yield of DNR and preventing autotoxicity for the producing organism remains a challenge.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!