The structure of the complex formed between bovine beta-trypsin and the highly potent synthetic inhibitor 2-{3'-[5'-methoxy-2'-(N-p-diaminomethylphenyl)amido]-1'-pyrido}-5-(N-2''-t-butylethanol)amidobenzoic acid (C(28)H(32)N(5)O(6)) has been determined at 0.97 A resolution. X-ray intensity data were collected to 0.97 A under cryocooled conditions. The structure was refined anisotropically using REFMAC5 and SHELX-97 to R(cryst) factors of 13.4 and 12.6% and R(free) factors of 15.7 and 16.3%, respectively. Several regions of the main chain and side chains that have not been previously observed were clearly defined in the present structure. H atoms are indicated as significant peaks in an |F(o) - F(c)| difference map, which accounts for an estimated 35% of all H atoms at the 2.5sigma level. The C, N and O atoms are definitively differentiated in the electron-density maps. The amido part of the inhibitor occupies the specificity pocket and the remainder fills the remaining part of the ligand-binding cleft and interacts with the enzyme through an extensive network of hydrogen bonds. The inhibitor distorts the stereochemistry of the catalytic triad, Ser195-His57-Asp102, thereby blocking the proton-relay process of the active site by preventing the formation of the crucial hydrogen bond between His57 N(delta1) and Asp102 O(delta1).

Download full-text PDF

Source
http://dx.doi.org/10.1107/S090744490700697XDOI Listing

Publication Analysis

Top Keywords

structure complex
8
highly potent
8
potent synthetic
8
synthetic inhibitor
8
097 resolution
8
structure
4
complex trypsin
4
trypsin highly
4
inhibitor
4
inhibitor 097
4

Similar Publications

Computational insights into the redox properties and electronic structures of [Tc=O] complexes: Implications for Tc-radiopharmaceuticals.

J Mol Graph Model

January 2025

"VINČA" Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, 11001, Belgrade, Serbia.

Technetium-99m plays a pivotal role in nuclear medicine, offering unique IMAGING capabilities due to its favorable physical and chemical properties. This study investigates the redox behavior and electronic structures of three representative Tc(V) oxo complexes, [TcO(HMPAO)], [TcO(Bicisate)], and [TcO(DMSA)], using computational techniques. Employing relativistic density functional theory with the Zero-Order Regular Approximation (ZORA), we analyze singlet-triplet energy gaps, Gibbs free energy changes, and redox potentials in neutral and acidic environments.

View Article and Find Full Text PDF

Genome-wide identification of the Sec14 gene family and the response to salt and drought stress in soybean (Glycine max).

BMC Genomics

January 2025

Henan Collaborative Innovation Center of Modern Biological Breeding, College of Agronomy, Henan Institute of Science and Technology, Xinxiang, 453003, China.

Background: The Sec14 domain is an ancient lipid-binding domain that evolved from yeast Sec14p and performs complex lipid-mediated regulatory functions in subcellular organelles and intracellular traffic. The Sec14 family is characterized by a highly conserved Sec14 domain, and is ubiquitously expressed in all eukaryotic cells and has diverse functions. However, the number and characteristics of Sec14 homologous genes in soybean, as well as their potential roles, remain understudied.

View Article and Find Full Text PDF

In this study, biopolymer composites based on chitosan (CS) with enhanced optical properties were functionalized using Manganese metal complexes and black tea solution dyes. The results indicate that CS with Mn-complexes can produce polymer hybrids with high absorption, high refractive index and controlled optical band gaps, with a significant reduction from 6.24 eV to 1.

View Article and Find Full Text PDF

The COVID-19 pandemic may have exacerbated mental health conditions by introducing and/or modifying stressors, particularly in university populations. We examined longitudinal patterns, time-varying predictors, and contemporaneous correlates of moderate-severe psychological distress (MS-PD) among college students. During 2020-2021, participants completed self-administered questionnaires quarterly (T1 = 562, T2 = 334, T3 = 221, and T4 = 169).

View Article and Find Full Text PDF

With climate extremes' rising frequency and intensity, robust analytical tools are crucial to predict their impacts on terrestrial ecosystems. Machine learning techniques show promise but require well-structured, high-quality, and curated analysis-ready datasets. Earth observation datasets comprehensively monitor ecosystem dynamics and responses to climatic extremes, yet the data complexity can challenge the effectiveness of machine learning models.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!