Infiltration of a mesothelioma by IFN-gamma-producing cells and tumor rejection after depletion of regulatory T cells.

J Immunol

Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Australia.

Published: April 2007

Depletion of CD4+CD25+Foxp3+ regulatory T cells (CD25+ T(reg)) with an anti-CD25 Ab results in immune-mediated rejection of tolerogenic solid tumors. In this study, we have examined the immune response to a mesothelioma tumor in mice after depletion of CD25+ cells to elucidate the cellular mechanisms of CD25+ T(reg), a subject over which there is currently much conjecture. Tumor rejection was found to be primarily due to the action of CD8+ T cells, although CD4+ cells appeared to play some role. Depletion of CD25+ cells resulted in an accumulation in tumor tissue of CD4+ and CD8+ T cells and NK cells that were producing the potent antitumor cytokine IFN-gamma. Invasion of tumors by CD8+ T cells was partially dependent on the presence of CD4+ T cells. Although a significant increase in the proliferation and number of tumor-specific CD8+ T cells was observed in lymph nodes draining the tumor of anti-CD25-treated mice, this effect was relatively modest compared with the large increase in IFN-gamma-producing T cells found in tumor tissue, which suggests that the migration of T cells into tumor tissue may also have been altered. Depletion of CD25+ cells did not appear to modulate antitumor CTL activity on a per cell basis. Our data suggests that CD25+ T(reg) limit the accumulation of activated T cells producing IFN-gamma in the tumor tissue and, to a lesser extent, activation and/or rate of mitosis of tumor-specific T cells in lymph nodes.

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.178.7.4089DOI Listing

Publication Analysis

Top Keywords

cells
17
cd8+ cells
16
tumor tissue
16
cells tumor
12
cd25+ treg
12
depletion cd25+
12
cd25+ cells
12
ifn-gamma-producing cells
8
tumor
8
tumor rejection
8

Similar Publications

Discovery of noncovalent diaminopyrimidine-based Inhibitors for glioblastoma via a dual FAK/DNA targeting strategy.

Eur J Med Chem

January 2025

School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China. Electronic address:

Temozolomide, a widely used alkylating agent for glioblastoma treatment, faces significant challenges due to the development of resistance, which severely impacts patient survival. This underscores the urgent need for novel strategies to overcome this barrier. Focal adhesion kinase (FAK), an intracellular non-receptor tyrosine kinase, is highly expressed in glioblastoma cells and has been identified as a promising therapeutic target for anti-glioblastoma drug development.

View Article and Find Full Text PDF

Hypothesis for Molecular Evolution in the Pre-Cellular Stage of the Origin of Life.

Wiley Interdiscip Rev RNA

January 2025

Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, People's Republic of China.

Life was originated from inorganic world and had experienced a long period of evolution in about 3.8 billion years. The time for emergence of the pioneer creations on Earth is debatable nowadays, and how the scenario for the prebiotic molecular interactions is still mysterious.

View Article and Find Full Text PDF

Dissociation of hydrogen and formation of water at the (010) and (111) surfaces of orthorhombic FeNbO4.

Chemphyschem

January 2025

University of Leeds, School of Chemistry, Woodhouse Lane, LS2 9JT, Leeds, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.

The orthorhombic structure of FeNbO4, where the Fe and Nb cations are distributed randomly over the octahedral 4c sites, has shown excellent promise as an anode material in solid oxide fuel cells. We have used DFT+U-D2 calculations to explore the adsorption and dissociation of H2 molecules and the formation reaction of water at the (010) and (111) surfaces. Simulations of the surface properties confirmed that the bandgaps are significantly reduced compared to the bulk material.

View Article and Find Full Text PDF

The secrets of the Tübingen Castle kitchen: Friedrich Miescher and the discovery of nuclein, the cornerstone of DNA.

Gac Med Mex

January 2025

Departamento de Anatomía Patológica, Fundación Clínica Médica Sur; Departamento de Biología Celular y Tisular, Escuela de Medicina, Universidad Panamericana. Mexico City, Mexico.

In 1869, Friedrich Miescher, born in Basel, Switzerland, discovered a previously unknown phosphorus-rich substance in the nuclei of pus cells. Conducting his research in a laboratory set up in the kitchen of Tübingen's medieval castle in Germany, and under the guidance by Professor Felix Hoppe-Seyler, Miescher primarily focused on the composition of cell nuclei. He obtained nuclear material by washing pus cells from surgical bandages provided by a nearby hospital.

View Article and Find Full Text PDF

Chemerin is a new sex-specific target in aortic stenosis concomitant with diabetes regulated by the aldosterone/mineralocorticoid receptor axis.

Am J Physiol Heart Circ Physiol

January 2025

Cardiovascular Translational Research. Navarrabiomed (Fundación Miguel Servet), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Pamplona, Spain.

Diabetes mellitus (DM) increases the risk of aortic stenosis (AS) and worsens its pathophysiology in a sex-specific manner. Aldosterone/mineralocorticoid receptor (Aldo/MR) pathway participates in early stages of AS and in other diabetic-related cardiovascular complications. We aim to identify new sex-specific Aldo/MR targets in AS complicated with DM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!