Decreased cerebrospinal fluid amyloid beta (1-40) levels in frontotemporal lobar degeneration.

J Neurol Neurosurg Psychiatry

Alzheimer Centre and Department of Neurology, VU University Medical Centre, PO Box 7057, 1007 MB Amsterdam, The Netherlands.

Published: July 2007

The role of amyloid metabolism in the pathophysiology of frontotemporal lobar degeneration (FTLD) has yet to be elucidated. We compared CSF levels of amyloid beta 1-40 (Abeta40) and amyloid beta 1-42 (Abeta42) in patients with FTLD (n = 21) versus patients with Alzheimer's disease (AD, n = 39) and in control subjects (n = 30). While in AD cases Abeta42 levels were lower and CSF Abeta40 levels equal to those in controls, a significant decrease in Abeta40 and increase in the CSF Abeta42/Abeta40 ratio was observed in FTLD compared with AD and control subjects. These findings favour a differential involvement of amyloid beta peptides in FTLD compared with AD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2117666PMC
http://dx.doi.org/10.1136/jnnp.2006.105064DOI Listing

Publication Analysis

Top Keywords

amyloid beta
16
beta 1-40
8
frontotemporal lobar
8
lobar degeneration
8
control subjects
8
ftld compared
8
amyloid
5
decreased cerebrospinal
4
cerebrospinal fluid
4
fluid amyloid
4

Similar Publications

Previous studies have suggested that systemic viral infections may increase risks of dementia. Whether this holds true for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus infections is unknown. Determining this is important for anticipating the potential future incidence of dementia.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is characterized by memory loss and neuropsychiatric symptoms associated with cerebral amyloid-β (Aβ) and tau pathologies, but whether and how these factors differentially disrupt neural circuits remains unclear. Here, we investigated the vulnerability of memory and emotional circuits to Aβ and tau pathologies in mice expressing mutant human amyloid precursor protein (APP), Tau or both APP/Tau in excitatory neurons. APP/Tau mice develop age- and sex-dependent Aβ and phosphorylated tau pathologies, the latter exacerbated at early stages, in vulnerable brain regions.

View Article and Find Full Text PDF

Muscarinic acetylcholine receptor 3 localized to primary endothelial cilia regulates blood pressure and cognition.

Sci Rep

January 2025

Department of Pharmacology and Experimental Therapeutics; MS 1015, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Health Education Building; Room 282E, 3000 Arlington Ave, Toledo, OH, 43614, USA.

We previously demonstrated that the inability of primary endothelial cilia to sense fluid shear stress can lead to nitric oxide (NO) deficiency and cause hypertension (HTN). Decreased biosynthesis of NO contributes to cerebral amyloid angiopathy in Alzheimer's disease (AD) patients through increased deposition of amyloid beta (Aβ). However, the molecular mechanisms underlying the pathogenesis of HTN and AD are incompletely understood.

View Article and Find Full Text PDF

Type-2-diabetes is a metabolic disorder where misfolding and oligomerization of islet amyloid polypeptide (IAPP) around islet-β cells oligomerizes and participates in the pathology. The oligomeric stage is toxic but transitory and leads to the formation of mature amyloid fibrils. The pathological specifics of mature amyloid fibrils are poorly understood.

View Article and Find Full Text PDF

Discovery of pyrazoline analogs as multi-targeting cholinesterase, β-secretase and Aβ aggregation inhibitors through lead optimization strategy.

Int J Biol Macromol

January 2025

Pharmaceutical Chemistry Research Laboratory I, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India. Electronic address:

The multi-target directed ligands (MTDLs) strategy has been evolved as the propitious approach for the development of therapeutics for Alzheimer's disease (AD). In an earlier report, we described the novel series of chalcone derivatives bearing N-aryl piperazine scaffold as MTDLs for the treatment of AD. Herein, we report the lead optimization of the series culminating in potent, multi-targeting compounds (32-57), evaluated through in-vitro and in-vivo biological studies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!