Post-translational modification of proteins by ubiquitin or ubiquitin-like polypeptides such as Nedd8 controls cellular functions including protein degradation, the cell cycle and transcription. Here we have used an activity-based chemical probe that covalently labels ubiquitin hydrolases. We identify four such enzymes from Toxoplasma gondii by mass spectrometry. The homologue of mammalian UCHL3 was cloned from both T. gondii and Plasmodium falciparum and we show that both enzymes possess deubiquitinating as well as deNeddylating activity. A phylogenetic analysis of the UCHL3 amino acid sequences from several eukaryotes suggests that dual specificity for ubiquitin and Nedd8 was present in the ancestral eukaryotic UCHL3 and has been conserved throughout evolution. Finally, the structural characterization of UCHL3 from T. gondii shows a unique insertion at the surface of this enzyme, which may be involved in novel interactions with other proteins. The characterization of these apicomplexan UCHL3s adds to our understanding of the ubiquitin and Nedd8 pathways in these parasites.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1462-5822.2007.00896.xDOI Listing

Publication Analysis

Top Keywords

ubiquitin nedd8
12
dual specificity
8
specificity ubiquitin
8
ubiquitin
5
apicomplexan uchl3
4
uchl3 retains
4
retains dual
4
nedd8
4
nedd8 evolution
4
evolution post-translational
4

Similar Publications

Neddylation drives myofibrillogenesis in the developing heart.

FASEB J

December 2024

Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, Georgia, USA.

Neddylation is a highly conserved post-translational modification that plays critical roles in various cellular processes through the modulation of cullins and non-cullin substrates. While neddylation is known to be essential for embryonic development, tumor growth, and organogenesis of different tissues, its role in cardiogenesis remains unexplored. Here, we investigated the role of neddylation in early cardiac development by deleting the gene encoding a regulatory subunit of the NEDD8-specific E1 activating enzyme, Nae1, globally and in a heart-specific fashion via Nkx2-5.

View Article and Find Full Text PDF

The identification of pathways that control elimination of protein inclusions is essential to understand the cellular response to proteotoxicity, particularly in the nuclear compartment, for which our knowledge is limited. We report that stress-induced nuclear inclusions related to the nucleolus are eliminated upon stress alleviation during the recovery period. This process is independent of autophagy/lysosome and CRM1-mediated nuclear export pathways, but strictly depends on the ubiquitin-activating E1 enzyme, UBA1, and on nuclear proteasomes that are recruited into the formed inclusions.

View Article and Find Full Text PDF

A novel approach to explore metabolic diseases: Neddylation.

Pharmacol Res

December 2024

Department of General Medicine, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China. Electronic address:

Protein post translational modification (PTM) is the main regulatory mechanism for eukaryotic cell function, among which ubiquitination is based on the reversible degradation of proteins by the ubiquitin proteasome system to regulate cell homeostasis. The neural precursor cell expressed developmental downregulated gene 8 (NEDD8) is a kind of ubiquitin like protein that shares 80 % homology and 60 % identity with ubiquitin. The PTM process by covalently binding NEDD8 to lysine residues in proteins is called neddylation.

View Article and Find Full Text PDF

As a critical member of the Coronin family, Coronin 1A (CORO1A) plays a crucial role in the progression of triple-negative breast cancer (TNBC). However, CORO1A is typically considered "undruggable" due to its smooth surface and complex protein-protein interactions (PPIs). Molecular glues have emerged as one of the most effective strategies to rapidly degrade such "undruggable" targets.

View Article and Find Full Text PDF

Cellular receptors regulate physiological responses by interacting with ligands, thus playing a crucial role in intercellular communication. Receptors are categorized on the basis of their location and engage in diverse biochemical mechanisms, which include posttranslational modifications (PTMs). Considering the broad impact and diversity of PTMs on cellular functions, we focus narrowly on neddylation, a modification closely resembling ubiquitination.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!