The PI3K p110delta controls T-cell development, differentiation and regulation.

Biochem Soc Trans

Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, UK.

Published: April 2007

PI3Ks (phosphoinositide 3-kinases) regulate diverse cellular functions such as metabolism, growth, gene expression and migration. The p110delta isoform of PI3K is mainly expressed in cells of the immune system and contributes to cellular and humoral immunity. In the thymus, p110delta and p110gamma play complementary roles in regulating the transition through key developmental checkpoints. In addition, p110delta regulates the differentiation of peripheral Th (helper T-cells) towards the Th1 and Th2 lineages. Moreover, p110delta is critical for Treg (regulatory T-cell) function. Here, we review the role of PI3Ks in T-cell development and function.

Download full-text PDF

Source
http://dx.doi.org/10.1042/BST0350167DOI Listing

Publication Analysis

Top Keywords

t-cell development
8
pi3k p110delta
4
p110delta controls
4
controls t-cell
4
development differentiation
4
differentiation regulation
4
regulation pi3ks
4
pi3ks phosphoinositide
4
phosphoinositide 3-kinases
4
3-kinases regulate
4

Similar Publications

Background: The proportion of people living with HIV (PLHIV) in Guangxi who are men who have sex with men (MSM) increased rapidly to nearly 10% in 2023; notably, over 95% of this particular population is currently receiving antiretroviral therapy (ART). This study aimed to describe the survival of MSM PLHIV, depict the characteristics and trends of changes in CD4 T cell counts, CD4/CD8 T cell ratio, and viral load, and explore immunological indicators that may be related to mortality during different stages of treatment.

Methods: Immunological indicators of MSM PLHIV receiving ART were extracted and categorized into baseline, mid-treatment, and last values.

View Article and Find Full Text PDF

T cell immune evasion by SARS-CoV-2 JN.1 escapees targeting two cytotoxic T cell epitope hotspots.

Nat Immunol

January 2025

National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.

Although antibody escape is observed in emerging severe acute respiratory syndrome coronavirus 2 variants, T cell escape, especially after the global circulation of BA.2.86/JN.

View Article and Find Full Text PDF

Robust mucosal SARS-CoV-2-specific T cells effectively combat COVID-19 and establish polyfunctional resident memory in patient lungs.

Nat Immunol

January 2025

State Key Laboratory of Respiratory Disease, National Clinical Research Centre for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.

Mucosal antigen-specific T cells are pivotal for pathogen clearance and immune modulation in respiratory infections. Dysregulated T cell responses exacerbate coronavirus disease 2019 severity, marked by cytokine storms and respiratory failure. Despite extensive description in peripheral blood, the characteristics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific T cells in the lungs remain elusive.

View Article and Find Full Text PDF

Hyperactivation of the YAP/TEAD transcriptional complex in cancers facilitates the development of an immunosuppressive tumor microenvironment. Herein, we observed that the transcription factor SP1 physically interacts with and stabilizes the YAP/TEAD complex at regulatory genomic loci in colorectal cancer (CRC). In response to serum stimulation, PKCζ (protein kinase C ζ) was found to phosphorylate SP1 and enhance its interaction with TEAD4.

View Article and Find Full Text PDF

Lung-targeted delivery of PTEN mRNA combined with anti-PD-1-mediated immunotherapy for In Situ lung cancer treatment.

Acta Biomater

January 2025

College of Chemistry, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, PR China. Electronic address:

mRNA-based protein replacement therapy has become one of the most widely applied forms of mRNA therapy, with lipid nanoparticles (LNPs) being extensively studied as efficient delivery platforms for mRNA. However, existing LNPs tend to accumulate in the liver or kidneys after intravenous injection, highlighting the need to develop vectors capable of targeting specific organs. In this study, we synthesized a small library of ionizable lipids and identified PPz-2R as a promising candidate, exhibiting lung-targeting capabilities, high mRNA transfection efficiency, and good stability through structure-activity relationship studies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!