Results pertaining to the electrochemical reduction of 1,2-diacetylcyclopropane (5), 1-acetyl-2-phenylcyclopropane (6), 1-acetyl-2-benzoylcyclopropane (7), and 1,2-dibenzoylcyclopropane (8) are reported. While 6*- exists as a discrete species, the barrier to ring opening is very small (<1 kcal/mol) and the rate constant for ring opening is >10(7) s(-1). For 7 and 8, the additional resonance stabilization afforded by the benzoyl moieties results in significantly lower rate constants for ring opening, on the order of 10(5)-10(6) s(-1). Electron transfer to 8 serves to initiate an unexpected vinylcyclopropane --> cyclopentene type rearrangement, which occurs via a radical ion chain mechanism. The results for reduction of 5 are less clear-cut: The experimental results suggest that the reduction is unexceptional, with a symmetry coefficient alpha = 0.5, and reorganization energy consistent with a simple electron-transfer process (one electron reduction, followed by ring opening). In contrast, molecular orbital calculations suggest that 5*- has no apparent lifetime and that reduction of 5 may occur by a concerted dissociative electron transfer (DET) mechanism (i.e., electron transfer and ring opening occur simultaneously). These seemingly contradictory results can be reconciled if the increase in the internal reorganization energy associated with the onset of concerted DET is offset by a lowering of the solvent reorganization energy associated with electron transfer to a more highly delocalized LUMO.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ja063857q | DOI Listing |
Environ Sci Technol
December 2024
State Ecology and Environment Scientific Observation and Research Station for the Yangtze River Delta at Dianshan Lake, Shanghai Environmental Monitoring Center, Shanghai 200030, China.
Biomass burning is an important source of brown carbon (BrC) aerosols, which influence climate by affecting the Earth's radiative balance. However, the transformation pathways of BrC chromophores, especially in the presence of photochemically active species, such as nitrate, are not well understood. In this study, the nitrate-mediated aqueous-phase photooxidation of three typical BrC chromophores from biomass burning was investigated, including 4-nitrocatechol, 3-nitrosalicylic acid, and 3,4-dinitrophenol.
View Article and Find Full Text PDFChemistryOpen
December 2024
MTA TTK Lendület Artificial Transporter Research Group, Institute of Materials and Environmental Chemistry, HUN-REN Research Center for Natural Sciences, H-1117, Budapest, Magyar tudósok krt. 2, Hungary.
Novel tetrahydroisoquinoline and piperidine derivatives were selectively synthesized from substituted indenes or cyclopentenes. The process starts with an oxidative cleavage of the ring olefin bond, which gives reactive diformyl intermediates. By a ring-closing step using chiral (R) or (S) α-methylbenzylamine under a reductive amination protocol facilitated ring formation with ring expansion of the corresponding nitrogen-containing heterocycles.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China.
Here, we report the enantioselective total syntheses of four diepoxy--kaurane diterpenoids including (-)-Macrocalin B, (-)-Acetyl-macrocalin B, and (-)-Isoadenolin A and the revised structure of (-)-Phyllostacin I, which hinges on the strategic design of a regioselective and stereospecific trapping of a highly reactive [3.2.1]-bridgehead enone intermediate via a tethered intramolecular Diels-Alder reaction.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou 350100, China.
Catalytic asymmetric transformation of donor-acceptor cyclopropanes (DACs) has been proven to be a highly valuable and robust strategy to construct diverse types of enantioenriched molecules. However, the use of 1,1,2,2-tetrasubstituted DACs to form products bearing quaternary stereocenters remains a long-term unsolved challenge. Here, we report the copper-catalyzed asymmetric aminative ring opening of tetrasubstituted alkynyl DACs that delivers a myriad of α-tertiary amines with high levels of enantioselectivities.
View Article and Find Full Text PDFWater Res X
January 2025
State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
Solar evaporation exhibits significant potential for the treatment of high-salt organic wastewater. However, it's also confronted with challenges due to the accumulation of organic pollutants and salts in the concentrated wastewater following evaporation, which compromises the long-term stability of evaporation unit and complicates subsequent treatment processes. To address these challenges, a volumetric solar interfacial evaporation (V-SIE) system by integrating FeO HO nanofluids and peroxydisulfate (PDS) were proposed in this study.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!