Mouse interleukin-3 (IL-3) binds to its receptor with high and low affinities. Using anti-Aic2 antibody, two distinct cDNAs (AIC2A and AIC2B) were isolated. The AIC2A gene encodes a protein of 120 Kd that binds IL-3 with low affinity, whereas the AIC2B gene encodes a protein that is 91% identical to AIC2A at the amino acid level, but which does not bind IL-3. To study the structure of the functional high-affinity IL-3 receptor (IL-3R), we generated specific monoclonal antibodies against the AIC2A protein. We produced a soluble AIC2A protein by inserting a termination codon at the beginning of the transmembrane domain of the AIC2A cDNA. Soluble AIC2A protein expressed in COS7 cells was purified to homogeneity and three anti-AIC2A monoclonal antibody-producing hybridomas (3D1, 3D4, and 9D3) were obtained from a rat immunized with the purified soluble AIC2A protein. The antibodies were specific for the AIC2A protein and did not bind to the AIC2B protein. Using chimeric receptors between AIC2A and AIC2B, recognition sites of the antibodies were mapped. The antibodies immunoprecipitated a 120-Kd protein from IL-3-dependent PT18 cells. The N-terminal sequence of the 120-Kd protein was consistent with the predicted processing site of the signal sequence of the AIC2A protein. Staining of IL-3-dependent and IL-3-independent cell lines with the 9D3 antibody were consistent with the IL-3 binding. The 9D3 antibody inhibited both the high-affinity IL-3 binding and the low-affinity binding, as well as IL-3-dependent proliferation. These results indicate that the AIC2A protein is a binding component of a high-affinity IL-3R.
Download full-text PDF |
Source |
---|
Biochem J
December 2002
Department of Pharmacy & Pharmacology, University of Bath, Bath BA2 7AY, UK.
The tyrosine phosphatase SHP-1 (Src homology phosphatase-1) has been widely implicated as a negative regulator of signalling in immune cells. We have investigated in detail the role of SHP-1 in interleukin-3 (IL-3) signal transduction by inducibly expressing wild-type (WT), C453S (substrate-trapping) and R459M (catalytically inactive) forms of SHP-1 in the IL-3-dependent cell line BaF/3. Expression of WT SHP-1 had little impact on IL-3-induced proliferation, but enhanced apoptosis following IL-3 withdrawal.
View Article and Find Full Text PDFToxicol Lett
March 2002
Department of Biology, Changwon National University, #9 Sarim-dong, Changwon, Kyungnam 641-773, South Korea.
Although 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) has been known for its immunosuppressive activity, the mechanisms of its action have been difficult to elucidate, partly because of its inability of exerting its effects in vitro. To gain insights into the molecular mechanisms of immunosuppressive effects of TCDD, we screened for genes, which are regulated by in vivo TCDD treatment in an allogeneic mouse tumor model. RNA, collected from lymphoid organs, was reverse-transcribed to cDNA and hybridized to DNA arrays.
View Article and Find Full Text PDFCell Signal
March 2002
Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, BA2 7AY, Bath, UK.
SHP1 and SHP2 tyrosine phosphatases have both been implicated in signalling pathways downstream of the interleukin-3 (IL-3) receptor. We have investigated the co-association of SHP1 and SHP2 with tyrosine-phosphorylated proteins in IL-3-dependent BaF/3 cells. We demonstrate that both SHP1 and SHP2 associate with Aic2A (beta chain of the IL-3 receptor), Gab2 and the paired inhibitory receptor B (PIR-B).
View Article and Find Full Text PDFCell Signal
March 2000
Department of Pharmacy and Pharmacology, University of Bath, Claverton Down, Bath, UK.
p46(Shc) and p52(Shc) become heavily tyrosine phosphorylated in response to interleukin 3 (IL-3) treatment. We have investigated the potential of Shc to integrate IL-3 signalling pathways and demonstrate that Shc associates with the beta subunits of the human (betac) and murine (Aic2A) IL-3 receptors, SHIP and Gab2 following IL-3 stimulation. The interaction between Shc and the IL-3 receptor beta chains was direct, mediated by both the SH2 and PTB domains.
View Article and Find Full Text PDFJ Biol Chem
September 1996
Institute of Pharmacological Sciences, University of Milan, Via Balzaretti 9, 20133 Milano, Italy.
We were interested in whether central nervous system progenitor cells possess the signal transduction machinery necessary to mediate cytokine functions and whether this machinery can become activated upon stable expression of a particular cytokine receptor. For this purpose we utilized a previously obtained conditionally immortalized striatum-derived nestin-positive cell line (ST14A). We found that ST14A cells express Jak2, but not Jak1 or Tyk2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!