Transgenic potato, Solanum tuberosum L., plants containing a synthetic cry1Ac gene coding for the Bacillus thuringiensis (Bt) crystalline insecticidal protein were produced and evaluated for resistance to Tecia solanivora Povolny (Lepidoptera: Gelechiidae), the larvae of which attack potato tubers. In total, 43 transgenic lines of commercial Andean potato varieties Diacol Capiro, Pardo Pastusa, and Pandeazúcar were obtained. These transgenic lines were found to have one to four copies of cry1Ac per genome and expression levels of Cry1Ac protein varying from 0.02 to 17 microg/g fresh tuber tissue. Bioassays of T. solanivora larvae on these transgenic potato tubers showed 83.7-100% mortality, whereas the mortality levels on nontransgenic lines were 0-2.67%. Our data indicate the capability of Bt transgenic technology to control the T. solanivora while reducing the use of chemical insecticides. Further studies under controlled field conditions will be helpful in exploring the potential of CrylAc potatoes in the insect pest management strategies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1603/0022-0493(2007)100[172:rttslg]2.0.co;2 | DOI Listing |
Pest Manag Sci
June 2019
Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, Brazil.
Background: Resistance to pesticides is an evolutionary process that entails, in most cases, substantial consequences to the biology of the resistant populations. In this study we focus on the life history traits of the potato tuber moth Tecia solanivora, an invasive and voracious pest for which resistance to pyrethroid insecticides was recently reported. Marginally resistant and multiple-resistant populations were selected from eight sampled localities in Colombia; the use of a fully susceptible population was not possible since none was recognized in the laboratory or field.
View Article and Find Full Text PDFPLoS One
January 2019
Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), C.I. Palmira, Valle del Cauca, Colombia.
Late blight and Guatemalan potato tuber moth caused by Phytophthora infestans and Tecia solanivora, respectively, are major phytosanitary problems on potato crops in Colombia and Ecuador. Hence, the development of resistant cultivars is an alternative for their control. However, breeding initiatives for durable resistance using molecular tools are limited due to the genome complexity and high heterozygosity in autotetraploid potatoes.
View Article and Find Full Text PDFPLoS One
August 2017
Department of Entomology, Cornell University, Ithaca, New York, United States of America.
The success of sustainable crop production depends on our ability to select or create varieties that can allocate resources to both growth and defence. However, breeding efforts have emphasized increases in yields but have partially neglected defence traits against pests. Estimating the costs of multiple defences against tuber herbivores and the tradeoffs among them, as well as understanding the relationship between yield and multiple defences is still unknown but relevant to both basic and applied ecology.
View Article and Find Full Text PDFPest Manag Sci
February 2017
Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG, Brasil.
Background: The Guatemalan potato tuber moth, Tecia solanivora, has been the most important pest species in Hispanico-American potato fields since its first record on potatoes in 1956 in Guatemala. This insect pest has been spreading to other parts of the world, including the Canary Islands in Europe. Tuber moth control relies heavily on the use of insecticides, including pyrethroids.
View Article and Find Full Text PDFOecologia
September 2016
Boyce Thompson Institute for Plant Research, 533 Tower Road, Ithaca, NY, 14853, USA.
Plants mediate interactions between aboveground and belowground herbivores. Although effects of root herbivory on foliar herbivores have been documented in several plant species, interactions between tuber-feeding herbivores and foliar herbivores are rarely investigated. We report that localized tuber damage by Tecia solanivora (Guatemalan tuber moth) larvae reduced aboveground Spodoptera exigua (beet armyworm) and Spodoptera frugiperda (fall armyworm) performance on Solanum tuberosum (potato).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!