C-reactive protein (CRP) is a risk marker and a potential modulator of vascular disease. Whether CRP modulates nitric oxide (NO) synthase (NOS) activity and NO metabolism remains unclear. We studied the effect of CRP on NO metabolism in transgenic mice that express human CRP (CRPtg). CRPtg and wild-type mice were subjected to controlled femoral artery wire injury. CRP serum levels at baseline and 6 and 24 h after injury were 12.4 +/- 9, 18.6 +/- 6.9, and 58.4 +/- 13 mg/l, respectively, in CRPtg mice but were undetectable at all time points in wild-type mice. Endothelial NOS protein and mRNA expression were significantly suppressed in the injured arteries of CRPtg mice (n = 5, P < 0.05). A similar reduction in eNOS expression was observed in the distant lung and heart. NO release after injury was significantly lower in CRPtg mice, as measured by nitrate and nitrite breakdown products, with a concomitant suppression of cGMP NO signaling after injury. Endothelial NOS and NO expression after vascular injury are locally and systemically suppressed in mice that express human CRP. These in vivo observations support the hypothesis that CRP modulates NO metabolism and may have implications regarding the mechanisms by which CRP modulates vascular disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpheart.01418.2006 | DOI Listing |
Medicina (Kaunas)
November 2024
Department of Medical Research, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi 62247, Taiwan.
For persons with rheumatoid arthritis (RA), the accompanying systemic inflammatory conditions often insidiously damage extra-glandular organs, causing poor outcomes. Despite evidence manifesting the application of rehabilitation services (RSs), the association between RSs use and changes in the inflammatory response among persons with RA has not yet been established. With that in mind, this study aimed to evaluate changes in C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR) before and after long-term RSs use.
View Article and Find Full Text PDFJ Biochem Mol Toxicol
January 2025
Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming, China.
This study investigates the metabolic disruptions caused by nicotine (NIC) exposure, with a particular focus on amino acid and lipid metabolism, and evaluates resveratrol (RSV) as a potential protective agent. Mice were divided into four groups: control (CON), NIC-exposed, NIC + RSV-treated, and RSV-only. NIC exposure resulted in significant weight loss, elevated glucose levels, altered lipid profiles, and organ damage, particularly in the liver and kidneys.
View Article and Find Full Text PDFHum Immunol
December 2024
Department of Rheumatology, Faculty of Medicine, Firat University, Elazig, Turkey.
Background: Idiopathic granulomatous mastitis (IGM) is a chronic inflammatory disorder characterised by the formation of non-caseating granulomas in breast tissue, primarily affecting young women of childbearing age. The aetiology of IGM remains unclear, with potential factors including trauma, hormonal influences, and autoimmune responses. Recent studies suggest that immune dysregulation may play a critical role in IGM, highlighting the need for exploration of biomarkers involved in inflammation and immune modulation, particularly LL-37, galectin-3, IL-36, and TLR3.
View Article and Find Full Text PDFMol Med
December 2024
Department of Otorhinolaryngology/Head and Neck, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, No.3 East Qingchun Road, Hangzhou, 310020, Zhejiang, China.
Background: Sleep apnea syndrome (SAS) is associated with hypertension and vascular remodeling. Hypoxia-inducible factor-1α (HIF-1α) and the Hippo-YAP pathway are implicated in these processes, but their specific roles remain unclear. This study investigated the HIF-1α/Hippo-YAP pathway in SAS-related hypertension.
View Article and Find Full Text PDFTissue Cell
December 2024
Department of Anatomy and Embryology, Faculty of Medicine, Kafrelsheikh University, Kafr El-Sheikh, Egypt.
Muscle and tendon injuries are prevalent occurrences during sports activities. Platelet-rich plasma (PRP) is known for its rich content of factors essential for wound healing, inflammation reduction, and tissue repair. Despite its recognized benefits, limited information is available regarding PRP's effectiveness in addressing combined surgical injuries to the gastrocnemius muscle and Achilles tendon.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!