Green tea polyphenol, epigallocatechin-3-gallate (EGCG) differentially regulates the cellular growth of cancer cells in a p53-dependent manner through apoptosis and/or cell cycle arrest. In an effort to further elucidate the mechanism of differential growth regulation by EGCG, we have investigated the role of the tyrosine phosphatase, SHP-2. Comparing the responses of mouse embryonic fibroblasts (MEFs), expressing either WT or functionally inactive/truncated SHP-2, we find that inactivation of SHP-2 remarkably sensitizes cells to EGCG-mediated killing. MEFs lacking functional SHP-2 undergo massive apoptosis upon treatment with EGCG. By comparing gene expression profiles, we have identified a set of transcriptional targets of p53 that are differentially modulated in cells undergoing apoptosis. Western blot and real-time PCR analyses of a select group of genes further confirm that the expression is SHP-2-dependent. Similar observations were made in MEFs lacking p53, confirming that the expression of these "p53 target genes" is p53-independent. In addition, EGCG treatment induced the expression of p73 mRNA and protein in both cell types, but not p63. Inactivation of p73 in cells expressing nonfunctional SHP-2 markedly inhibited apoptosis and p53 target gene expression. Although phosphorylation of JNK is differentially regulated by SHP2, it was found to be dispensable for EGCG-induced apoptosis and p53 target gene expression. Our results have identified SHP-2 as a negative regulator of EGCG-induced-apoptosis and have identified a subset of p53 target genes whose expression is paradoxically not mediated by p53 but by one of its family members, p73.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1838507PMC
http://dx.doi.org/10.1073/pnas.0700642104DOI Listing

Publication Analysis

Top Keywords

p53 target
16
gene expression
12
tyrosine phosphatase
8
expression
8
subset p53
8
target genes
8
mefs lacking
8
apoptosis p53
8
target gene
8
shp-2
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!