Systematic Analysis of proteoglycan modification sites in Caenorhabditis elegans by scanning mutagenesis.

J Biol Chem

Department of Biochemistry and Biophysics, Center for Oral Biology, Aab Institute of Biomedical Sciences, University of Rochester Medical Center, Rochester, NY 14642, USA.

Published: May 2007

Proteoglycan modification is essential for development and early cell division in Caenorhabditis elegans. The specification of proteoglycan attachment sites is defined by the Golgi enzyme polypeptide xylosyltransferase. Here we evaluate the substrate specificity of this xylosyltransferase for its downstream targets by using reporter proteins containing proteoglycan modification sites from C. elegans syndecan/SDN-1. The N terminus of the SDN-1 contains a Ser-Gly proteoglycan site at Ser(71), flanked by potential mucin and N-glycosylation sites. However, Ser(71) was exclusively used as a proteoglycan site in vivo, based on mapping studies with a Ser(71) reporter protein, glycosyltransferase RNA interference, and co-expression of worm polypeptide xylosyltransferase. To elucidate the substrate requirements of this enzyme, a library of 42 point mutants of the Ser(71) reporter was expressed in tissue culture. The nematode proteoglycan modification site in SDN-1 required serine (not threonine), two flanking glycine residues (positions -1 and +1), and either one proximal acidic N-terminal amino acid (positions -4, -3, and -2) or a pair of distal N-terminal acidic amino acids (positions -6 and -5). C-terminal acidic amino acids, although present in many proteoglycan modification sites, had minimal impact on xylosylation at Ser(71). Proline inhibited glycosylation when present at -1, +1, or +2. The position of glycine, proline, and acidic amino acids allows the glycosylation machinery to discriminate between mucin and proteoglycan modification sites. The key residues that define proteoglycan modification sites also function with the Drosophila polypeptide xylosyltransferase, indicating that the specificity in the glycosylation process is evolutionarily conserved. Using a neural network method, a preliminary proteoglycan predictor has been developed.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M609193200DOI Listing

Publication Analysis

Top Keywords

proteoglycan modification
28
modification sites
20
polypeptide xylosyltransferase
12
acidic amino
12
amino acids
12
proteoglycan
11
caenorhabditis elegans
8
proteoglycan site
8
ser71 reporter
8
modification
7

Similar Publications

Modification-specific Proteomic Analysis Reveals Cysteine S-Palmitoylation Involved in Esophageal Cancer Cell Radiation.

ACS Omega

January 2025

Department of Oncology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou 225300, China.

This study aimed to investigate the effects of radiation (RT) on protein and protein S-palmitoylation levels in esophageal cancer (EC) cell lines. EC cells ( = 6) were randomly divided into RT and negative control. The results revealed that 592 proteins were identified in the RT group, including 326 upregulation proteins and 266 downregulation proteins.

View Article and Find Full Text PDF

Background: Most patients with prostate cancer inevitably progress to castration-resistant prostate cancer (CRPC), at which stage chemotherapeutics like docetaxel become the first-line treatment. However, chemotherapy resistance typically develops after an initial period of therapeutic efficacy. Increasing evidence indicates that cancer stem cells confer chemotherapy resistance via exosomes.

View Article and Find Full Text PDF

Adeno-associated virus (AAV)-based vectors have emerged as an effective and widely used technology for somatic gene therapy approaches, including those targeting the retina. A major advantage of the AAV technology is the availability of a large number of serotypes that have either been isolated from nature or produced in the laboratory. These serotypes have different properties in terms of sensitivity to neutralizing antibodies, cellular transduction profile and efficiency.

View Article and Find Full Text PDF

Preeclampsia (PE) is a gestational complication affecting 5% to 10% of all pregnancies. PE is characterized by hypertension and endothelial dysfunction, whose etiology involves, among other factors, alterations in the extracellular matrix (ECM) that can compromise vascular remodeling and trophoblast invasion, ie, processes essential for placental development. Endothelial dysfunction is caused by release of antiangiogenic factors, mainly a soluble fms-like tyrosine kinase-1 (sFlt-1), which antagonizes two endothelial angiogenic factors, the vascular endothelial growth factor (VEGF) and placental growth factor (PLGF).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!