The plants transformed by either Agrobacterium-mediated or directly delivered DNA transformation possess complex transgenic loci. The transgenes tend to be integrated into gene-rich regions on chromosomes due to selection of transgenic cells during tissue culture rather than integrated elsewhere randomly. Fragments of transferred DNA are interspersed with genomic DNA and filler DNA at most of transgenic loci except a few which contain complete single-copy of transgene. Analysis of transgenic loci flanking sequences indicated that deletion, duplication and chromosomal rearrangement often occurred for transgene and genomic DNA. The complete transgenic structure is important for its expression in transformed plants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1360/yc-007-0157 | DOI Listing |
Plant Cell Physiol
January 2025
Institute for Chemical Research, Kyoto University, Gokasho, Uji, 611-0011 Kyoto, Japan.
Lotus japonicus-ROOT HAIR LESS1-LIKE1 (LRL1) of Arabidopsis thaliana encodes a basic helix-loop-helix (bHLH) transcription factor (TF) involved in root hair development. Root hair development is regulated by an elaborate transcriptional network, in which GLABRA2 (GL2), a key negative regulator, directly represses bHLH TF genes, including LRL1 and ROOT HAIR DEFECTIVE6 (RHD6). Although RHD6 and its paralogous TFs have been shown to connect downstream to genes involved in cell morphological events such as endomembrane and cell wall modification, the network downstream of LRL1 remains elusive.
View Article and Find Full Text PDFNat Cancer
January 2025
Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA.
Mutations in cancer risk genes increase susceptibility, but not all carriers develop cancer. Indeed, while DNA mutations are necessary drivers of cancer, only a small subset of mutated cells go on to cause the disease. To date, the mechanisms underlying individual cancer susceptibility remain unclear.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Umeå Plant Science Centre, Department Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-90183 Umeå, Sweden.
Resin biosynthesis in conifer is a complex process, controlled by multiple quantitative trait loci (QTLs). Quantifying resin components is traditionally expensive and labor-intensive. In this study, we employed near infrared (NIR) spectroscopy to quantify resin components in Slash pine using 240 genotypes.
View Article and Find Full Text PDFBiotechnol J
January 2025
Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA.
The implementation of site-specific integration (SSI) systems in Chinese hamster ovary (CHO) cells for the production of monoclonal antibodies (mAbs) can alleviate concerns associated with production instability and reduce cell line development timelines. SSI cell line performance is driven by the interaction between genomic integration location, clonal background, and the transgene expression cassette, requiring optimization of all three parameters to maximize productivity. Systematic comparison of these parameters has been hindered by SSI platforms involving low-throughput enrichment strategies, such as cell sorting.
View Article and Find Full Text PDFbioRxiv
January 2025
Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269, USA.
The reaction-diffusion (RD) system is widely assumed to account for many complex, self-organized pigmentation patterns in natural organisms. However, the specific configurations of such RD networks and how RD systems interact with positional information (i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!