Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Automatic text classification is an important task for many natural language processing applications. This paper presents a neural approach to develop a text classifier based on the Learning Vector Quantization (LVQ) algorithm. The LVQ model is a classification method that uses a competitive supervised learning algorithm. The proposed method has been applied to two specific tasks: text categorization and word sense disambiguation. Experiments were carried out using the Reuters-21578 text collection (for text categorization) and the Senseval-3 corpus (for word sense disambiguation). The results obtained are very promising and show that our neural approach based on the LVQ algorithm is an alternative to other classification systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neunet.2006.12.005 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!