Biochemical surface modification has been used to direct cell attachment and growth on a biocompatible gel surface. Acrylamide-based hydrogels were photo-polymerized in the presence of an acroyl-streptavidin monomer to create planar, functionalized surfaces capable of binding biotin-labelled proteins. Soft protein lithography (microcontact printing) of proteins was used to transfer the biotinylated extracellular matrix proteins, fibronectin and laminin, and the laminin peptide biotin-IKVAV, onto modified surfaces. As a biological assay, we plated LRM55 astroglioma and primary rat hippocampal neurons on patterned hydrogels. We found both cell types to selectively adhere to areas patterned with biotin-conjugated proteins. Fluorescence and bright-field modes of microscopy were used to assess cell attachment and cell morphology on modified surfaces. LRM55 cells were found to attach to protein-stamped regions of the hydrogel only. Neurons exhibited significant neurite extension after 72h in vitro, and remained viable on protein-stamped areas for more than 4 weeks. Patterned neurons developed functionally active synapses, as measured by uptake of the dye FM1-43FX. Results from this study suggest that hydrogel surfaces can be patterned with multiple proteins to direct cell growth and attachment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2729282 | PMC |
http://dx.doi.org/10.1016/j.jneumeth.2007.01.024 | DOI Listing |
Clin Cosmet Investig Dermatol
January 2025
Department of Dermatology, Changshu No. 1 People's Hospital, Changshu Hospital Affiliated to Soochow University, Changshu, Jiangsu, 215500, People's Republic of China.
Objective: Rosacea is a common chronic inflammatory disorder primarily affecting the face. While inflammatory factors are known to play a pivotal role in its pathogenesis, their causal relationship with rosacea remains unclear. This study employed a two-sample bidirectional Mendelian randomization (MR) analysis to investigate the causal links between systemic inflammatory regulators and rosacea.
View Article and Find Full Text PDFJ Inflamm Res
January 2025
Precision Medicine Laboratory, School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, People's Republic of China.
Ovarian cancer (OC) remains one of the most lethal gynecological malignancies, largely due to its late-stage diagnosis and high recurrence rates. Chronic inflammation is a critical driver of OC progression, contributing to immune evasion, tumor growth, and metastasis. Inflammatory cytokines, including IL-6, TNF-α, and IL-8, as well as key signaling pathways such as nuclear factor kappa B (NF-kB) and signal transducer and activator of transcription 3 (STAT3), are upregulated in OC, promoting a tumor-promoting environment.
View Article and Find Full Text PDFJ Bioinform Syst Biol
January 2024
Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, United States.
Purpose: Nitric oxide (NO) is recognized as an important biological mediator that controls several physiological functions, and evidence is now emerging that this molecule may play a significant role in the postnatal control of ocular growth and myopia development. We therefore sought to understand the role that nitric oxide plays in visually-guided ocular growth in order to gain insight into the underlying mechanisms of this process.
Methods: Choroids were incubated in organ culture in the presence of the NO donor, PAPA- NONOate (1.
Front Immunol
January 2025
Department of Neuro-oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
Introduction: Glioma is the most common primary malignant brain tumor. Despite advances in surgical techniques and treatment regimens, the therapeutic effects of glioma remain unsatisfactory. Immunotherapy has brought new hope to glioma patients, but its therapeutic outcomes are limited by the immunosuppressive nature of the tumor microenvironment (TME).
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.
Background: Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal forms of cancer, and despite low incidence rates, it remains the sixth leading cause of cancer related deaths worldwide. Immunotherapy, which aims to enhance the immune system's ability to recognize and eliminate cancer cells, has emerged as a promising approach in the battle against PDAC. PARP7, a mono-ADP-ribosyltransferase, is a negative regulator of the type I interferon (IFN-I) pathway and has been reported to reduce anti-tumour immunity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!