Trialkyllead compounds induce the opening of the MTP pore in rat liver mitochondria.

J Inorg Biochem

Environmental Sciences Department, Ca' Foscari University of Venice, Dorsoduro D2137, 30123 Venice, Italy.

Published: May 2007

The interactions of the tributyl, triethyl and trimethyllead compounds with energized mitochondria have been investigated in this paper. It has been shown that the (alkyl)(3)Pb-Cl compounds induce swelling in mitochondria suspended in a sucrose medium. The phenomenon is more marked the higher the lipophilicity and occurs in the following order: (Bu)(3)Pb>(Et)(3)Pb>(Me)(3)Pb. As swelling is inhibited by cyclosporine, this suggests that the swelling is due to the opening of a trans-membrane pore (MTP pore) in the mitochondria. As this pore can be responsible for the inhibition of the ATP synthesis, and, consequently for cell death, the opening of the pore could be one of the reasons for the toxicity of the (alkyl)(3)Pb-X compounds.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jinorgbio.2007.01.016DOI Listing

Publication Analysis

Top Keywords

compounds induce
8
mtp pore
8
pore
5
trialkyllead compounds
4
induce opening
4
opening mtp
4
pore rat
4
rat liver
4
mitochondria
4
liver mitochondria
4

Similar Publications

New cinnamic acid sugar esters as potential UVB filters: Synthesis, cytotoxicity, and physicochemical properties.

Carbohydr Res

January 2025

Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Campus Scientifico E. Mattei, via Ca' Le Suore 2, 61029, Urbino, PU, Italy. Electronic address:

Cinnamic Acid Sugar Ester Derivatives (CASEDs) are a class of natural compounds that exhibit several interesting biological activities. However, to date, no examples of their use in sunscreen formulations have been reported. Here, we describe the synthesis of a series of novel cinnamic acid esters of glucose (4a-g), ribose (4h) and lactose (4i) starting from the respective acetals 3.

View Article and Find Full Text PDF

T-cell prolymphocytic leukemia (T-PLL) is an aggressive lymphoid malignancy with limited treatment options. To discover new treatment targets for T-PLL, we performed high-throughput drug sensitivity screening on 30 primary patient samples ex-vivo. After screening over 2'800 unique compounds, we found T-PLL to be more resistant to most drug classes, including chemotherapeutics, compared to other blood cancers.

View Article and Find Full Text PDF

Hierarchical Porous Aggregate-Enabled Chromatography-Inspired Single-Sensor E-Nose for Volatile Monitoring.

ACS Sens

January 2025

School of Chemistry and Molecular Engineering, In Situ Devices Research Center, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai 200241, China.

Monitoring volatile organic compounds (VOCs) is crucial for ensuring safety and health. In this study, we introduce a strategy to engineer a chromatography-inspired single-sensor (CISS) e-nose tailored for VOC monitoring. This approach overcomes the limitations of traditional methodologies and conventional e-noses.

View Article and Find Full Text PDF

This study presents T-1-NBAB, a new compound derived from the natural xanthine alkaloid theobromine, aimed at inhibiting VEGFR-2, a crucial protein in angiogenesis. T-1-NBAB's potential to interacts with and inhibit the VEGFR-2 was indicated using in silico techniques like molecular docking, MD simulations, MM-GBSA, PLIP, essential dynamics, and bi-dimensional projection experiments. DFT experiments was utilized also to study the structural and electrostatic properties of T-1-NBAB.

View Article and Find Full Text PDF

Melatonin increases Pb tolerance in P. ovata seedlings via the regulation of growth and stress-related phytohormones, ROS scavenging and genes responsible for melatonin synthesis, metal chelation, and stress defense. Lead (Pb) is a highly toxic heavy metal that accumulates in plants through soil and air contamination and impairs its plant growth and development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!