The purpose of this study was to test the relative influence of organic matter quantity and quality and the pollutant content of a stormwater sediment deposit on mineralization processes, microbial characteristics, and the release of solutes in infiltration sediment systems. In microcosm experiments, two other natural sediment deposits (one low and one rich particulate organic matter deposits) were studied to compare their effects with those of the stormwater deposit. The results showed that the biogeochemical processes (aerobic respiration, denitrification, fermentative processes), the microbial metabolism (enzymatic activities), and the releases of several solutes (NH(4)(+) and DOC) were stimulated in presence of the stormwater deposit and the natural particulate organic matter (POM)-rich deposit because of the quantity of the POM in these deposits. In the stormwater deposit, the high availability of the POM (indicated by its low C/N ratio and its high P content) produced a higher stimulation of the microbial metabolism than in presence of the POM-rich deposit (with a high C/N ratio). Pollutant (hydrocarbon and heavy metal) contents of the stormwater deposit did not have a significant effect on microbial processes. Thus, main effects of the stormwater sedimentary deposit on infiltration system were due to its organic matter characteristics (quantity and quality). Such organic matter characteristics need to be considered in future studies to determine the contamination potential of stormwater management practices.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2007.01.093DOI Listing

Publication Analysis

Top Keywords

organic matter
20
stormwater deposit
16
deposit
9
stormwater sediment
8
sediment deposit
8
deposit microbial
8
biogeochemical processes
8
quantity quality
8
processes microbial
8
particulate organic
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!